

MOBILITY MEMORANDUM

FOR THE I-15 ENVIRONMENTAL IMPACT STATEMENT FROM FARMINGTON TO SALT LAKE CITY

July 7^{TH} , 2022

PROJECT NO: S-I15-7(369)309 PIN: 18857

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being or have been carried-out by UDOT pursuant to 23 USC 327 and a Memorandum of Understanding dated January 17, 2017, and executed by FHWA and UDOT.

- -

INTRODUCTION

The Utah Department of Transportation (UDOT) is leading the I-15 Environmental Impact Statement (EIS) from Farmington to Salt Lake City. Potential improvements along the study area will eventual be identified for motorized and non-motorized transportation. This memorandum is one step of that process. An extensive data collection effort was undertaken to provide a complete assessment of current mobility conditions across the study area. Connections and access for motorized and non-motorized in two chapters and followed by detailed appendices.

Chapter 1: Motorized Demand and Operations Analysis, is an evaluation of motorized traffic in the study area. A detailed discussion of the Travel Demand Model is included in Chapter 1. Motorized traffic analysis includes traffic volumes, average speeds, and other details of existing travel patterns and conditions. Also included is an analysis of No-Action conditions for the year 2050.

Chapter 2: Non-motorized Demand and Operations Analysis, is an evaluation of existing conditions for non-motorized mobility. Examples of non-motorized mobility are walking and biking. This includes evaluating connections at 19 crossings identified along I-15, as well as parallel north-south mobility. Chapter 2 also includes demographic information of populations using non-motorized mobility and what crossings are being used.

TABLE OF CONTENTS

Chapter 1: Motorized Demand and Operations Analysis Chapter 1: Appendices

Chapter 2: Non-motorized Demand and Operations Analysis Chapter 2: Appendix

CHAPTER1: TRAVEL DEMAND AND OPERATIONS ANALYSIS

MAY 20TH, 2022 PROJECT NO: S-I15-7(369)309 | PIN: 18857

The environmental review, consultation, and other actions required by applicable Federal environmental laws for this project are being or have been carried-out by UDOT pursuant to 23 USC 327 and a Memorandum of Understanding dated January 17, 2017, and executed by FHWA and UDOT.

TECHNICAL MEMORANDUM

TO: Project Team, I-15 EIS; Farmington to Salt Lake City

FROM: Traffic Group, Horrocks Engineers

DATE: May 20th,2022

SUBJECT: Travel Demand and Operations Analysis I-15 EIS; Farmington to Salt Lake City Project No. S-I15-7(369)309; PIN 18857

1. INTRODUCTION

This memorandum details the results of the existing (2019) and No-Action (2050) travel model and traffic operations analysis performed in support of the Utah Department of Transportation (UDOT) I-15 Environmental Impact Statement (EIS); Farmington to Salt Lake City. The EIS team is evaluating improvements to I-15 between Farmington and Salt Lake City that are programmed for the Phase 1 project R-D-53 as identified in the Wasatch Front Regional Council (WFRC) 2019-2050 Regional Transportation Plan (2019). The required traffic data collection, roadway configurations, study methodology, model calibration, and traffic operations for existing (2019) and 2050 No-Action conditions are provided in this memorandum.

The traffic analysis contained in this report is based on future land use, planned projects, and modeling assumptions. If some of the assumptions change as the study progresses the results contained in this report may be updated based on more current information.

1.1 LOGICAL TERMINI

Logical termini provide rational end points for transportation improvements. Rational end points can include major crossroads, population centers, traffic generators, or highway control elements. They allow the project to tie into the existing transportation system without prescribing future improvements. They must be broad enough to allow for a range of reasonable transportation solution alternatives and to allow for a comprehensive review of environmental impacts.

The southern logical termini for the I-15 EIS; Farmington to Salt Lake City is I-15 just south of the I-15/400 South interchange in Salt Lake City. Salt Lake City is a primary commuting destination for morning peak trips and a primary source of trips during the evening peak. 400 South, 600 North, and Beck Street are the primary interchanges into Salt Lake City, while the interchanges farther south at 1300 South and 2100 South, which are not included in the study area, do not tie as directly into the dense business and population centers of Salt Lake City.

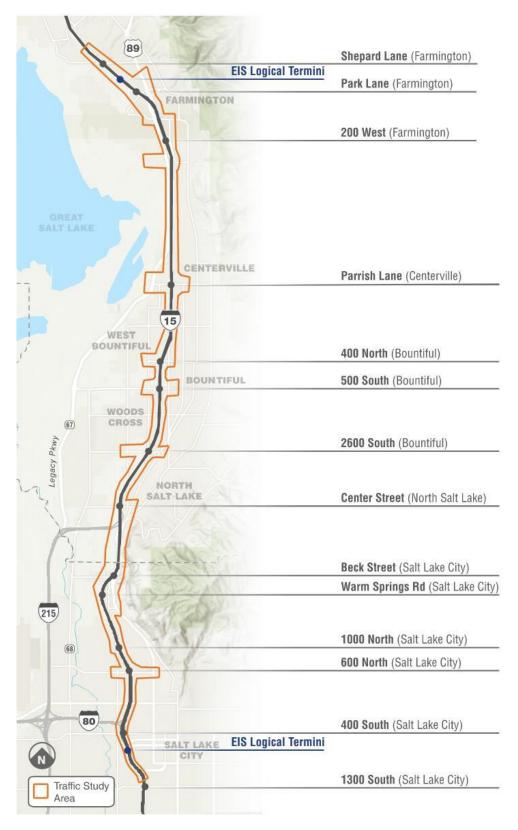
The I-15/I-80 westbound freeway-to-freeway connection provides a system-to-system interchange that leads to industrial centers, the airport, and additional system-to-system connections. Farther

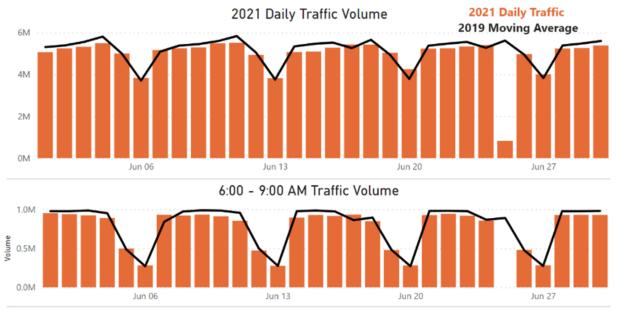
south is an additional system-to-system connection at I-80 eastbound and SR-201 westbound and the beginning/end of a Collector-Distributor (C-D) system.

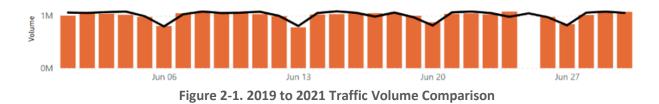
The northern logical termini for the I-15 EIS; Farmington to Salt Lake City is I-15 just north of the I-15/US-89 system-to-system interchange in Farmington. US-89 north of I-15 in Farmington serves commuter traffic from Farmington, Fruit Heights, Kaysville, and Layton and provides a connection between I-84 to the north and I-15 to the south.

Each of the I-15 interchanges between the northern and southern logical termini are included in the study area. The logical termini for the east and west include the next major intersection to the east and to the west of each of the service interchanges.

These logical termini establish the general location limits of alternatives that will be given detailed consideration in the EIS. The traffic study area for the EIS extends a little farther south beyond the proposed logical termini to 1300 South in Salt Lake City and farther north to the planned Shepard Lane interchange in Farmington to demonstrate forward-compatibility. The traffic study area for the I-15 EIS; Farmington to Salt Lake City is shown in Figure 1-1.




Figure 1-1. I-15 EIS; Farmington to Salt Lake City Traffic Study Area Map


2. DATA COLLECTION

In 2020, transportation volumes were disrupted by the COVID-19 pandemic. For many sectors, normal business services were interrupted, and many employees began working from home. This led to unpredictable traffic volumes in 2020. Using 2020/2021 traffic volumes for this study would have led to an inaccurate assessment of current and future conditions. Figure 2-1 displays traffic volumes on I-15 in Davis County at permanent count stations during 2019 (black line) and 2021 (orange bars). In this traffic study, the existing conditions analysis refers to a 2019 AM and PM peak period condition. 2019 was selected over 2021 as the base year for the following reasons:

- Although 2021 volumes approached or surpassed pre-COVID levels, congestion along the I-15 corridor was less volatile and more predictable in 2019. Simulation models can be calibrated better when there is existing congestion to match the causes of congestion.
- Transit ridership in 2021 did not recover to pre-COVID levels.
 - FrontRunner System-Wide:
 - 2018 (221,170), 2019 (225,743), 2020 (86,782), 2021 (86,484)
- The regional Travel Demand Model (TDM) 8.3.2 (discussed in detail in Section 4.2) is calibrated to 2019 and uses transit ridership from 2019.

4:00 - 7:00 PM Traffic Volume

2.1 TIME PERIOD ESTABLISHED

Two 4-hour time blocks have been established on I-15 mainline as the analysis periods: AM (6:00 to 10:00 AM), which coincides with peak I-15 travel in the southbound direction, and PM (3:00 to 7:00 PM), which coincides with peak I-15 travel in the northbound direction. These peak periods are based on count data collected from the UDOT permanent counting stations. These hours were selected to begin and end the traffic simulation in an uncongested state with a defined peak so that congestion would build and then dissipate over time. The 4-hour periods demonstrate how much peak spreading occurs in 2050 as travel demand continues to increase and congestion spreads outside the typical 1-or 2-hour peak demand periods. Backup data is contained in the Methods and Assumptions memorandum that was prepared previously.

Intersection analysis uses the same 4-hour time blocks that was established for mainline operations analysis: AM (6:00 to 10:00 AM) and PM (3:00 to 7:00 PM).

2.2 DATA COLLECTION LOCATIONS

The I-15 EIS; Farmington to Salt Lake City traffic analysis utilized 2019 pre-COVID traffic volumes as well as traffic data gathered in 2021.

2.2.1 Intersection Count Locations

Table 2-1 displays traffic count locations observed in 2019.

Location	N/S Street	E/W Street	City
1	US-89	Park Lane	Farmington
2	I-15	Park Lane	Farmington
3	I-15	200 West	Farmington
4	I-15	Parrish Lane	Centerville
5	I-15	400 North	West Bountiful/Bountiful
6	I-15	500 South	Woods Cross/West Bountiful/Bountiful
7	I-15	2600 South	Woods Cross/North Salt Lake/Bountiful
8	I-15	Center Street	North Salt Lake
9	I-15	I-215	Salt Lake City
10	I-15	US-89/Beck Street	Salt Lake City
11	I-15	1100 West/Warm Springs Road	Salt Lake City
12	I-15	1000 North	Salt Lake City
13	I-15	600 North	Salt Lake City
14	I-15	I-80	Salt Lake City
15	I-15	400 South	Salt Lake City

Table 2-1. 2019 Intersection Count Locations (AM/PM Peak Period)

Additional daily pneumatic tube counts were obtained for one week in the spring of 2021 for model calibration at the road segments shown in Table 2-2.

Location	Count Road	Count Area	City
1	1500 South	600 West – 675 West	Woods Cross
2	Main Street	500 North – 550 North	North Salt Lake

Table 2-2. 2021 Daily Pneumatic Tube Counts

Additional peak hour traffic counts were collected between May 4 and July 2 of 2021 at intersections adjacent to I-15 in the traffic study area and are included in Table 2-3.

Table 2-3. 2021 Intersection Count Locations (AM/PM Peak Period)

Location	N/S Street	E/W Street	City
1	900 West	600 North	Salt Lake City
2	800 West	600 North	Salt Lake City
3	400 West	600 North	Salt Lake City
4	Warm Springs Road	On-ramp to I-15	Salt Lake City
5	900 West	On-ramp to I-15	Salt Lake City
6	US-89	Eaglegate Drive	North Salt Lake
7	US-89	Eagle Ridge Drive	North Salt Lake
8	US-89	Center Street	North Salt Lake
9	Main Street	Center Street	North Salt Lake
10	Wildcat Way	2600 South	Woods Cross
11	US-89	2600 South	Woods Cross/North Salt Lake/Bountiful
12	1100 West	2600 South	North Salt Lake
13	US-89	500 South	Bountiful
14	700 West	500 South	West Bountiful/Woods Cross
15	800 West	500 South	West Bountiful
16	500 West	400 North	West Bountiful/Bountiful
17	660 West	400 North	West Bountiful
18	About 750 West	400 North	West Bountiful
19	800 West	400 North	West Bountiful
20	US-89	1000 North	Bountiful
21	Frontage Road	1600 North	Bountiful
22	Frontage Road	Parrish Lane	Bountiful
23	Marketplace Drive	Parrish Lane	Centerville
24	400 West	Parrish Lane	Centerville
25	1250 West	Parrish Lane	Centerville
26	Legacy Parkway Northbound Ramps	Parrish Lane	Centerville

Location	N/S Street	E/W Street	City
27	Legacy Parkway Southbound Ramps	Parrish Lane	Centerville
28	Frontage Road	Glovers Lane	Farmington
29	Tippetts Lane	Glovers Lane	Farmington
30	200 West	State Street	Farmington
31	400 West	State Street	Farmington
32	Tippetts Lane	State Street	Farmington
33	Chicago Street	1800 North	Salt Lake City
34	Beck Street	Chicago Street	Salt Lake City
35	Warm Springs Road	1800 North	Salt Lake City
36	US-89	I-15 Southbound On-ramp	Salt Lake City
37	300 West	600 North	Salt Lake City
38	I-15 Southbound Off-ramp	I-80 West	Salt Lake City
39	I-15 Northbound On-ramp	I-80 West	Salt Lake City
40	I-15 Southbound Off-ramp	Poplar Grove Boulevard	Salt Lake City
41	I-15 SB On-ramp, I-15 NB Off-ramp	Poplar Grove Boulevard	Salt Lake City
42	I-15 Northbound On-ramp	University Boulevard	Salt Lake City

3. EXISTING (2019) AND 2050 NO-ACTION CONDITIONS

3.1 EXISTING (2019) CONDITIONS

3.1.1 Intersection Volumes and Geometries

The existing (2019) intersections and roadway network are portrayed in Appendix A and include intersection geometries, signal locations, and AM/PM traffic volumes. The roadway geometries and configurations are representative of the time and day when data were collected. Since data were collected on different days, the peak hour turning volumes were balanced to accommodate simulation parameters.

3.1.2 I-15 Mainline Geometries and Volumes

The traffic study area consists of 18 miles of I-15 mainline roadway between downtown Salt Lake City and Farmington, Utah. The existing mainline geometries, volumes, and ramp volumes are shown in Appendix B.

In each direction, I-15 has four general-purpose lanes north of the I-215 interchange and three general-purpose lanes south of I-215 with one Express Lane that extends through the study area. Auxiliary lanes are included in several sections between on- and off-ramps. I-15 has a speed limit of 70 mph throughout the study area. In the study area, I-15 is accessed by 13 service interchanges and 3 system-to-system interchanges, with a future system-to-system interchange at the planned West Davis Corridor.

I-15 System-to-System Interchanges:

- I-80 (full system-to-system interchange).
- I-215 (eastbound I-215 to northbound I-15 and southbound I-15 to westbound I-215 ramps only).
- US-89 (I-15 northbound exit ramp and southbound entrance ramp only).
- West Davis Corridor (future eastbound West Davis Corridor to southbound I-15 and northbound I-15 to westbound West Davis Corridor ramps only).

I-15 Service Interchanges:

- 400 South (Salt Lake City) Partial Single Point Urban Interchange (SPUI) with north ramps for all vehicles and south ramps for HOT vehicles only.
- 600 North (Salt Lake City) SPUI.
- 1000 North/900 West (Salt Lake City) Partial interchange with no northbound exit ramp and the south ramps disconnected by 900 West.
- 1100 West/Warm Springs (Salt Lake City) northbound ramps connect to Warm Springs Road on the east side, southbound ramps connect to 2300 North/1100 West on the west side.
- Beck Street (North Salt Lake) Partial interchange with free flow northbound on- and southbound off-ramps.
- Center Street (North Salt Lake) Partial intersection with southbound exit ramp only.
- 2600 South (North Salt Lake) Modified Diverging Diamond Interchange (DDI) with westbound cross-over only and southbound exit ramp jug handle.
- 500 South (West Bountiful) DDI.
- 400 North (West Bountiful) Half Diamond Interchange with south ramps only.
- 500 West (Bountiful) Partial interchange with free flow northbound on- and southbound off-ramps.
- Parrish Lane (Centerville) Tight Diamond Interchange (TDI).
- 200 West (Farmington) Partial interchange with free flow northbound off- and southbound on-ramps.
- Park Lane (Farmington) TDI.

3.2 2050 NO-ACTION CONDITION

The 2050 No-Action condition assumes that the identified projects within the WFRC 2019-2050 Regional Transportation Plan would be operational by 2050, except for the improvements that are the subject of this environmental study (WFRC project ID R-D-53). All other improvements listed in the WFRC 2019-2050 Regional Transportation Plan and other local plans are included in the volume calculations and traffic modeling. Projected 2050 traffic I-15 mainline traffic is provided in Appendix

C. The WFRC 2019-2050 Regional Transportation Plan projects near the traffic study area are displayed in Table 3-1 and Table 3-2.

WFRC Project ID	Roadway Project Name	Description	Phase Funded
R-D-53	I-15 Widening: Farmington to Salt Lake County Line	Widening (Add 1 Express Lane both directions)	1
R-S-137	I-15 Widening: Davis County Line to 600 North	Widening (from 4 and 5 lanes to 6 lanes in both directions)	1
R-D-22	Park Lane: Station Parkway to Lagoon Drive	Operational	1
R-D-23	500 South: I-15 to Main Street	Operational	2
R-D-24	Center Street: Legacy Parkway to US-89	Operational	1
R-D-30	West Davis Corridor	New Construction	1
R-D-40; R-S- 132	I-15/Managed Motorways	Operational	2
R-D-42	Legacy Parkway I-15/US-89 to I-215	Widening (Add 1 Express Lane Northbound and Southbound)	2
R-D-46	Redwood Road: 500 South to 2600 South Widening	Widening to 5 lanes	3
R-D-52	1250 West/650 West: New Road - Glovers Lane to 1275 North	New Construction	1
R-D-54	Farmington Frontage Road Connection: Lagoon Drive to 200 West		
R-D-56	US-89: Widen to 6 lanes between I-15 and US-89	Widening	1
R-D-57	500 West (US-89): I-15 to 2600 South	Operational	2
R-D-58	Davis Boulevard Extension: Davis Boulevard to 400 North	North New Construction	
R-D-73	I-15 Parrish Lane Interchange	Interchange Improvement	2
R-D-74	Porter Lane Overpass of I-15	Grade-Separated Crossing	2
R-D-75	500 South Crossing of Railroad at 800 West	Grade-Separated Crossing	1
R-D-76	1500 South Crossing of Railroad at 900 West	Grade-Separated Crossing	2
R-D-77	2600 South/1100 North Railroad crossing at 1050 West	Grade-Separated Crossing	1
R-D-78	Center Street Overpass Railroad Crossing at 300 West	Grade-Separated Crossing	1
R-S-136	I-15 Express Ramps and Reversible Lanes: Davis County to Utah County	Widening	3

Table 3-1. WFRC Roadway In	mprovements in t	the Traffic Study Area
----------------------------	------------------	------------------------

WFRC Project ID	Transit Project Name Description		Phase Funded
T-D-1/T-S-1	Doubletrack FrontRunner: Davis and Salt Lake Counties Upgrade		2
T-D-3/T-S-3	Davis-Salt Lake City Community Connector Bus Rapid Transit (BRT) Bus Rapid Transit (BRT)		1
T-D-4	North Redwood Corridor Core Service Core Service		2
T-D-9	Clearfield to Woods Cross Core Service 15 Core Service 15		2

Table 3-2. WFRC Transit Improvements in the Traffic Study Area

4. TRAFFIC ANALYSIS METHODOLOGY

A Methods and Assumptions memorandum was previously submitted to establish the analysis methodologies to be performed for this traffic study. This section provides a brief outline of the methodologies used, with more complete detail provided in the Methodologies and Assumptions memorandum.

4.1 ANALYTICAL SOFTWARE TOOLS

The following traffic analytical software packages were used in the traffic analysis:

- Synchro/SimTraffic (Trafficware/Cubic)
- VISSIM (PTV)
- Cube (Bentley/Citilabs)

4.1.1 Synchro/SimTraffic

Synchro/SimTraffic software, version 10, was used to organize and balance the peak hour traffic counts along the study corridors. The software was also used for optimizing signal timing for future year scenarios.

4.1.2 VISSIM

VISSIM is a microscopic simulation software program used to perform a detailed traffic operations analysis for this study. VISSIM elevates the Synchro/SimTraffic data to the next level of analysis and simulation with the ability to model complicated intersection geometries and operations in addition to freeway operations. VISSIM was used in this study for performing traffic operations analysis on the I-15 mainline, I-15 interchanges, and adjacent intersections. The study used VISSIM 2021, with the most current service packs, for operational analysis.

4.1.3 Cube

Cube software was used in this traffic study to forecast future traffic based on projections of land use, socioeconomic patterns, and transportation system characteristics. Cube software runs the TDM

(see section 4.2) and is the medium where the traffic operations model data resides and where calculations are performed.

Table 4-1 details the analysis type and use of each of the software packages.

Software Package	Use/Analysis Type	Output/Performance Measure
Synchro/SimTraffic, version 10	Arterial intersections/signal optimization	Optimized signal timings, intersection delay, congestion
	Intersections	Delay, congestion
	Basic freeway segments, weaving areas	Density, speed, percent of traffic demand served
VISSIM, version 2021-12	Ramp junctions (merges/diverges)	Density, speed, percent of traffic demand served, number of lane changes
	Ramp terminal intersections, adjacent intersections	queue length, congestion
	Overall roadway network system	Travel time, delay, vehicle miles traveled
Cube, version 6.5.0	Development of future travel demand	Daily and peak hour turning movement volumes

Table 4-1. Traffic Analysis Software Packages

4.2 REGIONAL TRAVEL DEMAND MODEL

4.2.1 Metropolitan Planning Organization Oversight

The Mountainland Association of Governments (MAG) and the Wasatch Front Regional Council (WFRC) jointly maintain a travel demand forecasting model for the five-county metropolitan region that includes Box Elder, Weber, Davis, Salt Lake, and Utah Counties. The regional TDM predicts future travel demand based on projections of land use, socioeconomic patterns, and transportation system characteristics. The model is based on the Cube software (currently using version 6.5.0). References to "the model" in this report refer to the scripts and data maintained by MAG and WFRC, not to the Cube software. The most recent official release of the model is version 8.3.2, which was made available on February 4, 2022.

The modifications to the TDM for the I-15 EIS; Farmington to Salt Lake City, outlined in subsequent sections of this report, improve the results for the existing (2019) conditions model. These improvements result in a better match with existing count data over the unmodified model. It is therefore reasonable to expect that these improvements will also improve the future conditions traffic projections and will be applied, as appropriate, to the model.

4.2.2 Travel Demand Model Input

Specific inputs to the model include socioeconomic forecasts and transportation system data. The socioeconomic data include population, households, and employment. Household data is further

classified by household size and average household income. Employment data is classified into 12 categories, which include subcategories for retail, industrial, and office. Public school enrollment is classified into elementary, middle, and high school. Special trip generation tables are included for colleges, the Salt Lake City International Airport, and Lagoon. Transportation system data include both roadway and transit networks. The roadway network includes freeways, arterials, and collectors. The transit network includes commuter rail, light rail, bus rapid transit (BRT), express bus routes, and many local bus routes. The TDM also includes a freight component that estimates truck traffic. Bicycle and pedestrian trips are tracked internally by the model, but do not have any specific inputs.

The MAG/WFRC model uses the traditional four-step modeling process, consisting of trip generation, trip distribution, mode split, and trip assignment. It includes an auto ownership model to better estimate trip generation and mode split. The model provides a feedback loop during trip distribution, allowing traffic congestion to influence trip distribution patterns.

Teleworking is not a new concept, and due to COVID it is becoming more acceptable and being offered more often as a perk of employment. Teleworking can help reduce vehicle trips and, with better data over time, may become a more substantial trip reducer. Teleworking has recently been included in the TDM and incorporates recent behavior changes of the work force and the potential long-term effects.

4.2.3 Traffic Analysis Zones

The TDM was refined within the study area with the intent to improve the level of accuracy provided by the model. The original roadway network and Traffic Analysis Zones (TAZ) in the model are wellsuited for regional traffic forecasts but generally do not provide enough detail for a smaller-scale study. Smaller TAZ can provide better loading of traffic onto the roadway network.

For these reasons, some of the original WFRC TAZ within or near the study area were split into smaller zones. In most instances, the TAZ were split along barriers such as existing or planned roads, rivers, railroads, and/or major land-use changes. After the splits, the socioeconomic data from the original TAZ were distributed into the new zones. It was assumed that variables such as income and household size for the smaller TAZ were the same as the original TAZ from which they were split. The roadway and transit networks were updated to accommodate the new TAZ structure and to better represent the existing roadway network within the study area. Figure 4-1 and Figure 4-2 show the TAZ splits that were applied for the EIS.

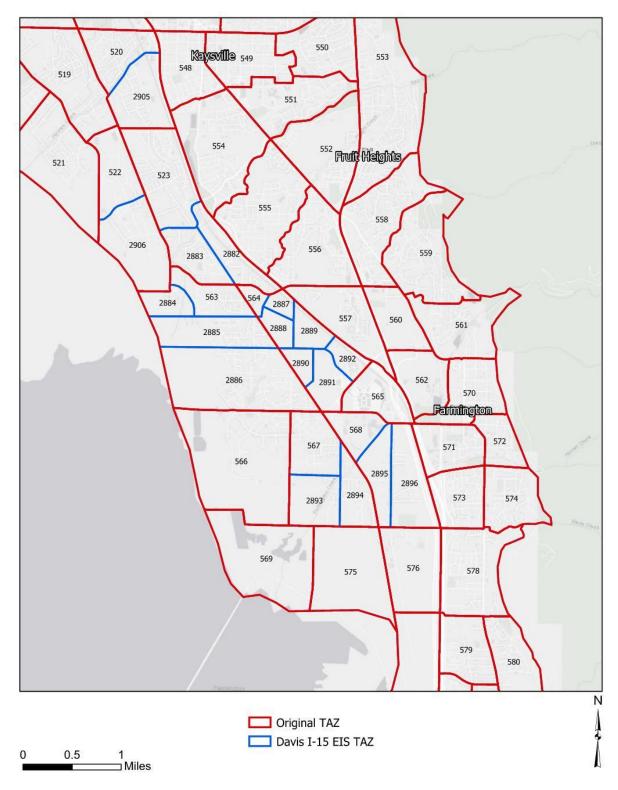


Figure 4-1. TDM TAZ modification (1 of 2)

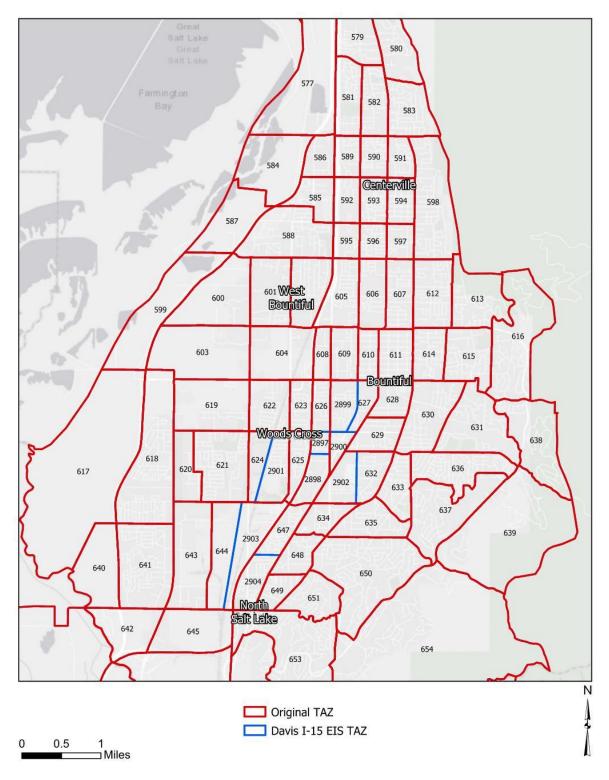


Figure 4-2. TDM TAZ modification (2 of 2)

4.2.4 Travel Demand Model Socioeconomic Data Adjustments

The original socioeconomic data included in the model were provided to all Cities within the study area. The Cities reviewed the employment and household data for the TAZ and provided comments. These comments were used to adjust the socioeconomic data in the model. Also, to maintain total data within the model, additional modifications were applied to TAZ outside the study area. Quality control checks were performed when running the model. No anomalies in socioeconomics were found in the study area. This information is shown in Appendix D.

4.2.5 Travel Demand Model Speed Factor Adjustments

To improve the local calibration of the model, the results of the TDM were compared with existing count data. If the TDM results were very high or very low compared to count data, then speed factors of the network links were modified to improve and match data gathered in the field. Speed factors will increase or decrease the base speed assumed by the TDM. In this way, a street can be made more attractive or less attractive in the model because it will modify travel times between origins and destinations along that route. These same speed factors were applied to the future conditions model. Table 4-2 summarizes the locations with speed factor modifications.

Street	Limits	Original Speed Factor	Modified Speed Factor
2600 South	400 West (Woods Cross) to 200 West (Bountiful)	0	0.90
I-215	I-80 to I-15	0	0.80
600 North	I-15 to Wall Street	0	0.85
Beck Street	2000 North to Eagle Ridge Drive	0	0.70

Table 4-2. Speed Factor	Modification Summary
-------------------------	----------------------

4.2.6 Travel Model Verification

The changes performed to the base WFRC model were done to increase its accuracy within the study area. A Root Mean Squared Error (RMSE) analysis was performed within the surrounding area for the modified model to verify that it remains a valid tool. A statement from the documentation of a previous TDM version, v6.0, is applicable to RMSE analyses in general. It states, *"The RMSE is used to calculate the effectiveness of individual link and node modifications, as well as general changes in trip generation and distribution and assignment parameters. RMSE should generally be less than 40%."*

Table 4-3 contains a comparison of the RMSE values from the base unmodified model with the modified model in which all the updates described previously have been applied.

Roadway Volume	Number of Data Locations	Unmodified Model RMSE	Modified Model RMSE
Less than 15,000	55	47%	44%
15,000 to 30,000	37	33%	25%
Over 30,000	16	12%	11%
Combined	108	25%	22%

Generally, higher-volume roadways have a closer match with TDM results than lower-volume roadways do. This is true for this analysis with the lower-volume roadways at 44-47% and the higher-volume roadways at 11-12%. For each roadway volume class, the modified model performed better than the unmodified model. The overall RMSE was 22%, which is well within the 40% criteria.

4.2.7 Managed Motorways

Managed Motorways uses systemwide sensors to monitor traffic and control access using coordinated ramp metering to maintain peak traffic flows. Managed Motorways is on the WFRC 2019-2050 Regional Transportation Plan as a Phase I project and is assumed to be part of the 2050 No-Action conditions.

Managed Motorways is integrated into the regional TDM 2050 base network. The model applies a time penalty to ramps based on the congestion levels of I-15. Sometimes these time penalties cause the predicted ramp volumes in 2050 to be much smaller than expected (e.g., smaller than existing), which can cause the ramp intersections to be under-designed. To address this issue, and in consultation with WFRC, the model was run both with and without Managed Motorways. The "without" Managed Motorways used the same origin-destination tables as "with" Managed Motorways and only runs the assignment portion of the model. This method allows the model to use the trip assumptions generated with Managed Motorways and route them in a more realistic way at the interchanges without the high ramp time penalties. This provides more reasonable results to use in generating the 2050 traffic volumes.

4.2.8 Forecast 2050 No-Action Volumes

2050 traffic volumes for the traffic study area were developed using the TDM, with 2050 socioeconomic data developed by WFRC for Phases 1-3 of the WFRC 2019-2050 Regional Transportation Plan (minus the I-15 Davis; Farmington to Salt Lake City improvements projects R-D-53 and R-S-137).

The TDM generates volumes to a three-hour default during peak periods (both AM and PM) at the interchange intersections. Conversion factors of 0.41 (AM) and 0.37 (PM) were used to change these three-hour forecasts to peak hour periods. These factors were calculated based on traffic count data in the TDM area. The existing balanced traffic volumes, along with the existing (2019) and 2050 model output data, were used for calculating volumes as described in the UDOT document "Utah Travel Demand Forecasting" (2008), which follows Chapter 8 of the National Cooperative Highway Research Program's (NCHRP) Report 255 (1982).

This process involved comparing the existing model volumes with actual count data. The numeric difference between the two volumes was used to make an adjustment to the 2050 volumes to help correct for errors in the model where it might be over-predicting or under-predicting volumes. The adjusted 2050 No-Action AM and PM peak hour traffic volumes at interchange intersections are included in Appendix E.

4.3 VISSIM MODEL CALIBRATION

The VISSIM software package, detailed in section 4.1.2, allows the user to modify settings to achieve more accurate results. For this traffic analysis, version 2021-12 of the VISSIM microsimulation software was used to model traffic in the study area. Several models of the existing geometry and traffic volumes were prepared to replicate the typical traffic conditions. Separate models were created due to the scale of the study area. The I-15 mainline was modeled separately from the adjacent intersections and corridors. In an attempt to further replicate actual traffic conditions, traffic observations, video recordings and travel time information were all used to calibrate the traffic models used for this analysis. A memo detailing the VISSIM model calibration is provided under a separate cover (*VISSIM Calibration Methodology and Results*, April 2022).

4.4 MEASURES OF EFFECTIVENESS

4.4.1 Average Speed Through Corridors

Measures of Effectiveness (MOEs) were used to estimate the effects of traffic congestion on drivers. The primary MOE used to quantify the effects of traffic on the road network is average travel speed. This method of measuring effectiveness allows the driver's experience to be somewhat quantified by reviewing a roadway system and not just one intersection at a time.

The traffic analysis identified the average travel speed along I-15 and arterials. For arterials, average speeds were compared to the posted speed during the AM and PM peak hours. Thresholds obtained from the 6th Edition of the Highway Capacity Manual (HCM) (Transportation Research Board [TRB], 2016) were used to assign a congestion level similar to what a driver would experience.

Table 4-4 shows the congestion thresholds for the arterials based on average travel speed through the corridor and the corresponding speed limit.

Travel Speed Threshold by Free Flow Speed (mph)							
		Posted Speed Limit					
Congestion	25 mph	30 mph	35 mph	40 mph	45 mph	50 mph	55 mph
Nominal	>20	>24	>28	>32	>36	>40	>44
Light	>17	>20	>23	>27	>30	>34	>37
Moderate	>13	>15	>18	>20	>23	>25	>28
Heavy	>10	>12	>14	>16	>18	>20	>22
Very Heavy	>8	>9	>11	>12	>14	>15	>17

Table 4-4. Arterial Corridor Driver Experience

4.4.2 Driver Experience at Intersections

To estimate what a driver may experience, the average vehicle delay is measured in seconds per vehicle. The more time the average driver waits or is delayed due to an intersection, the more their

driver experience degrades (TRB, 2016). Table 4-5 shows how the average delay due to intersection congestion relates to what a driver will experience.

	Delay (s/veh)		
Driver Experience	Signalized	Unsignalized	
Free Flow Operations / Minor Delays	0 ≤ 10	0 ≤ 10	
Smooth Operations / Short Delays	10 ≤ 20	10 ≤ 15	
Stable Operations / Moderate Delays	20 ≤ 35	20 ≤ 25	
Approaching Unstable Operations / Extended Delays	35 ≤ 55	25 ≤ 35	
Unstable Operations / Long Delays	55 ≤ 80	35 ≤ 50	
Very Poor Operations / Excessive Delays	> 80	> 50	

4.4.3 Intersection Queue Lengths

Another MOE used in the traffic analysis was queueing at intersections. The analysis identified the average and 95th percentile queue length for each movement at the study intersections. Queue length is used to identify issues such as queuing between intersections, queues that extend in mainline I-15, and turning movement queues that exceed their available storage.

5. SOCIOECONOMIC DATA AND TRAVEL DEMAND

5.1 EXISTING (2019)/2050 COUNTY LEVEL SOCIOECONOMIC DATA

Socioeconomic data (households, population, employment) is a primary input to the TDM. Future control totals for housing and jobs are forecast by the Kem C. Gardner Policy Institute (GPI) of the University of Utah at a county level for the state of Utah (GPI, 2017). WFRC then uses a land use model to allocate those control totals for the Metropolitan Planning Organization (MPO) boundary at a TAZ level using information such as land use plans, accessibility, environmental constraints, and market analysis. Table 5-1 and Table 5-2 display the 2019 and 2050 household, population, and employment data for the counties along the Wasatch Front.

The four highest-populated counties along the Wasatch Front are expected to grow by an average of 50% between 2019 and 2050. The jobs per population ratio is expected to increase in Salt Lake and Davis Counties and decrease in Utah and Weber Counties.

County	2019 Population	2019 Employment	2019 Jobs/Population
Davis	356,000	170,000	0.48
Salt Lake	1,144,000	846,000	0.74
Utah	643,000	317,000	0.49
Weber	251,000	132,000	0.53
Total/Average	2,394,000	1,465,000	0.61 (Average)

Table 5-1. 20	019 Population/	Employment
---------------	-----------------	------------

County	2050 Population	Growth from 2019	2050 Employment	Growth from 2019	2050 Jobs/Population
Davis	488,000	37%	252,000	48%	0.52
Salt Lake	1,502,000	31%	1,198,000	42%	0.80
Utah	1,269,000	97%	594,000	87%	0.47
Weber	342,000	36%	168,000	27%	0.49
Total/Average	3,601,000	50% (Average)	2,212,000	52% (Average)	0.61 (Average)

Table 5-2. 2050 Population/Employment

5.1.1 Travel Patterns

Regional travel patterns were analyzed using information collected from StreetLight data, the WFRC TDM, UDOT PeMS /Clearguide, and Census data.

Table 5-3 shows that 43% of Davis County residents' employment is located in Salt Lake or Utah counties. Additionally,

Table 5-4 shows that 41% of Weber County residents commute to Davis, Salt Lake, and Utah Counties for work.

With over half of the jobs along the Wasatch Front located in Salt Lake County and over 40% of Davis and Weber County workers commuting south, it creates a heavy north/south travel demand between Weber/Davis and Salt Lake Counties with strong directional splits during peak commuter travel times. This pattern is confirmed in the traffic volumes gathered as part of this study.

County	Jobs	Percentage
Weber	21,000	14%
Davis	55,000	38%
Salt Lake	59,000	40%
Utah	5,000	3%
Other	6,000	4%
Total	146,000	100%

Table 5-3. Davis County Residents' Work Destinations

Source: Census LEHD 2018

Table 5-4. Weber County Residents' Work Destinations

County	Jobs	Percentage
Weber	56,000	52%
Davis	21,000	19%
Salt Lake	20,000	19%
Utah	4,000	3%
Other	7,000	6%
Total	108,000	100%

Source: Census LEHD 2018

To better understand regional travel patterns through the study area, the Wasatch Front was divided into five zones:

- 1. Weber County/ Northern Davis County
- 2. Southern Davis County
- 3. West Salt Lake City
- 4. East Salt Lake City
- 5. Southern Salt Lake County/Utah County

Existing (2019) and future 2050 origin-destination trips were calculated between these zones using the WFRC TDM and StreetLight data.

Figure 5-1 displays the existing (2019) and 2050 daily (24-hour) person trips on an average weekday between northern Davis County/Weber County to southern Davis County and other counties to the south. Over 200,000 daily trips occurred between northern Davis/Weber counties and the zones to the south in the 2019 condition. With forecasted development in the region, it is predicted that by 2050 the travel demand between these areas will increase by over 50% to over 300,000 trips per day.

Figure 5-2 displays daily travel between southern Davis County and the surrounding zones. Over 250,000 daily trips occurred between southern Davis County and the surrounding zones in 2019. It is predicted that by 2050 the travel demand between these areas will increase by 60% to nearly 400,000 trips per day.

A screen-line analysis was performed to quantify the travel demand across northern/southern Davis County on the north side and Davis and Salt Lake Counties on the south side. A similar screen-line was established along the I-15 corridor in southern Davis County to estimate east-west travel across I-15.

The screen-lines drawn in Figure 5-3 shows travel demand across northern/southern Davis County increasing by over 125,000 daily trips by 2050, an increase of over 64%. The screen-line shows travel demand across Davis and Salt Lake Counties increasing by over 125,000 daily trips by 2050, an increase of over 51%. East-west travel demand across I-15 in the study area is expected to increase by 26,000 daily trips, an increase of 37%.

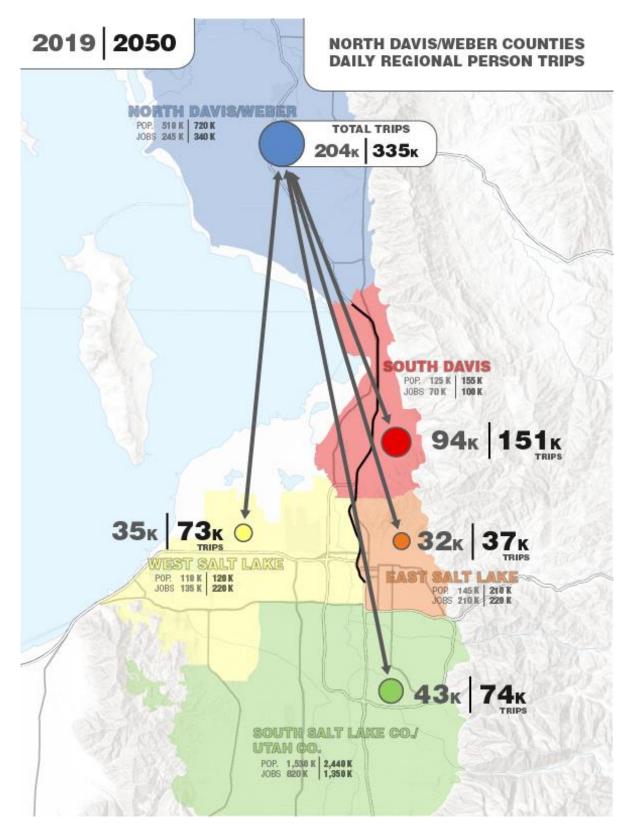


Figure 5-1. Existing (2019) and 2050 No-Action North Davis/Weber Counties Regional Travel Demand

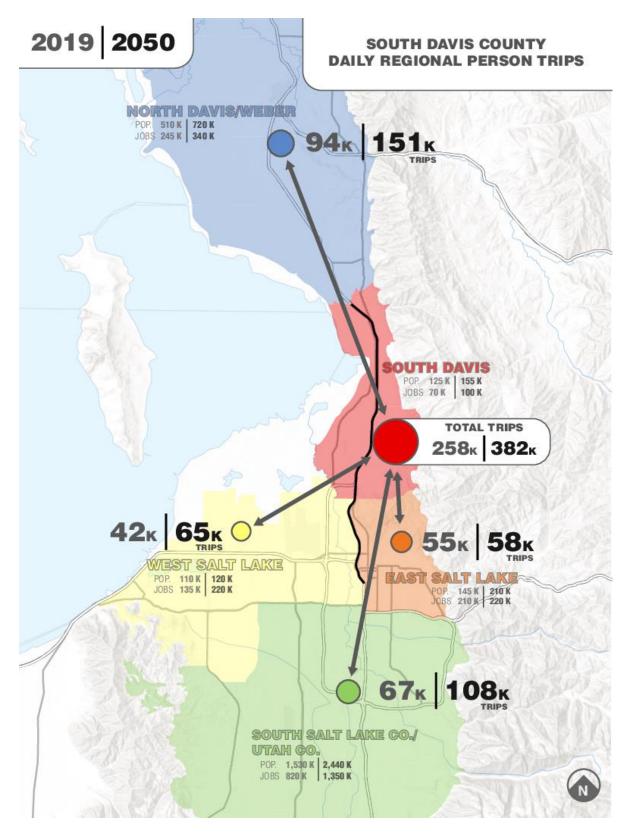


Figure 5-2. Existing (2019) and 2050 No-Action South Davis County Regional Travel Demand

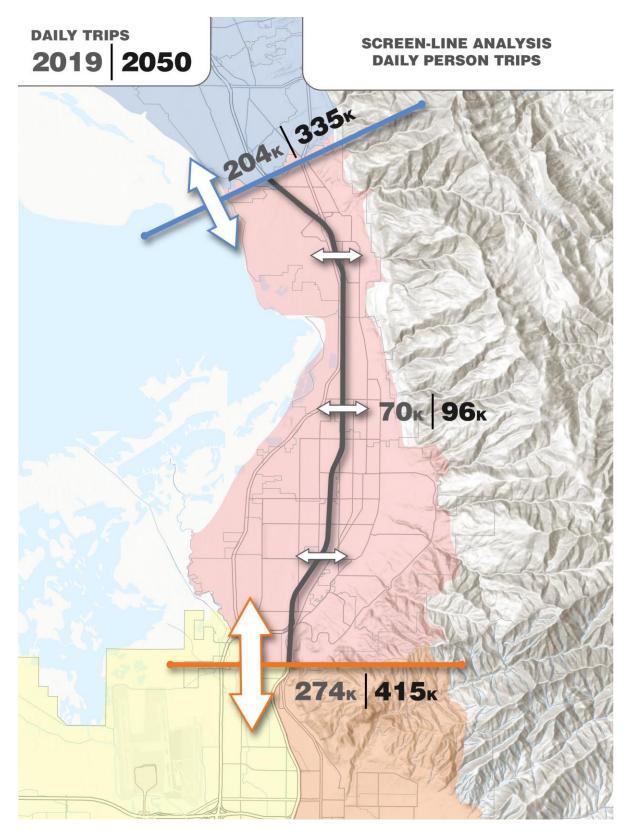


Figure 5-3. Existing (2019) and 2050 No-Action Screen-Line Analysis Results

North of the Salt Lake Study area, Legacy Parkway and I-15 accommodate regional trips south of US-89 and the future West Davis Corridor. Table 5-5 and Table 5-6 display screen-line average weekday daily traffic (AWDT) and transit riders on the north side of the study area.

Deeduueu	20)19	2050	
Roadway	# Lanes	AWDT	# Lanes	AWDT
Legacy Parkway	4	30,000	6	80,000
I-15	10	170,000	10	227,000
Total	14	200,000	16	307,000

Table 5-5. Project Area North Side Screen-line (Traffic Volumes)

Table 5-6.	Project Area	North Side	Screen-line	(Transit Riders)
	i i oject Aieu			

Transit Line	Total Daily Riders		
	2019	2050	
FrontRunner	5,760	14,000	
S455	170	360	
S456	20	140	
S470	240	170	
S472X	20	40	
S473X	310	820	
BRTNSDA_R		760	
Total	6,520	16,290	

At the Salt Lake/Davis County line, I-215 and I-15 accommodate regional trips south, with Beck Street and Redwood Road providing additional capacity as major arterials.

Table 5-7 and Table 5-8 display screen-line average weekday daily traffic volumes and transit riders at the Salt Lake/Davis County line.

Roadway	20)19	2050	
KUduway	# Lanes	AWDT	# Lanes	AWDT
I-215	6	80,000	8	130,000
I-15	8	170,000	8	220,000
Beck Street	4	30,000	4	34,000
Redwood Road	2	14,000	4	17,000
Total	20	294,000	24	401,000

Table 5-7. Salt Lake/Davis County Line Screen-line (Traffic Volumes)

Tropoit Line	Total Daily Riders		
Transit Line	2019	2050	
FrontRunner	8,410	19,660	
D460	60	40	
D461	50	30	
D462	50	50	
S455	730	430	
S456	30	170	
S463	80	40	
S470	560	180	
S471	150	50	
S472X	20	40	
S473X	550	1,060	
BRTNRedwd_T		690	
BRTNSDA_R		3,070	
Total	10,690	25,510	

Table 5-8. Salt Lake/Davis County Line Screen-line Daily Riders

6. TRAFFIC OPERATIONS ANALYSIS

Traffic operations were analyzed in the study area using the calibrated VISSIM models for existing (2019) and 2050 No-Action conditions using the study methodology detailed in Section 4. Traffic signal timings were optimized for 2050 using Synchro and then manually adjusted as appropriate to improve operations.

6.1 EXISTING (2019) AND 2050 NO-ACTION ARTERIAL ANALYSIS

6.1.1 Arterial Operations (2019/2050)

Vehicle travel times were measured throughout the VISSIM network and collected for each of the arterial corridors for existing (2019) and 2050 No-Action conditions during AM and PM peak travel times. The results of the travel time analysis are shown in Table 6-1.

Street	City	Begin Segment	End Segment	2019 Travel Time (Minutes)	2050 Travel Time (Minutes)	% Change
600 N EB	Salt Lake	1200 W	US-89	5.4	9.0	66%
600 N WB	Salt Lake	Wall St	800 W	4.2	4.7	13%
2600 S EB	N. Salt Lake	1250 W	US-89	5.0	7.4	47%
2600 S WB	N. Salt Lake	500 W	1100 W	4.2	9.7	134%
500 S EB	W. Bountiful	Howard St	500 W	3.3	3.7	12%
500 S WB	W. Bountiful	285 W	8th W	3.2	6.8	113%
400 N EB	W. Bountiful	900 W	500 W	2.1	3.6	73%
400 N WB	W. Bountiful	200 W	800 W	2.4	9.3	290%
Parrish Ln EB	Centerville	Legacy Pkwy	400 W	2.5	10.5	320%
Parrish Ln WB	Centerville	Main St	Legacy Pkwy	4.2	12.0	187%
			AVERAGE	3.6	7.7	111%

Table 6-1: Arterial Travel Time Comparison (PM Peak Hour)

Table 6-1 shows the travel time along study corridors are estimated to more than double between 2019 and 2050 with Parrish Lane travel time increasing by more than 300%.

See Appendix F for average travel times and speed through corridors during the 4-hour AM and PM peak periods.

6.1.2 Intersections Operations (2019/2050)

Traffic operations at each study intersection, including intersections at the interchange ramp terminals, were measured using the VISSIM models for existing (2019) and 2050 No-Action peak hour conditions. Average delay, percent of travel demand served, and 95% queues were collected.

Figure 6-1 and Figure 6-2 compare the level of congestion and 95% queueing for the PM peak hour at each intersection for existing (2019) and 2050 No-Action conditions.

Figure 6-1 and Figure 6-2 also show that several of the study intersections are expected to experience heavy congestion during the PM peak hour in 2050. Each of the service interchanges experience congested conditions at one or more of the ramp terminal intersections during the 2050 PM peak hour. In 2050, queue lengths are expected to extend back into I-15 mainline at the 600 North, 2600 South, 500 South, 400 North, and Parrish Lane interchanges.

More detailed metrics for the existing (2019) AM/PM peak hour traffic analysis is provided in Appendix G. Details on the No-Action (2050) intersection traffic analysis report is shown in Appendix H

Existing (2019)/No-Action (2050) PM Peak Hour Traffic Operations Comparison

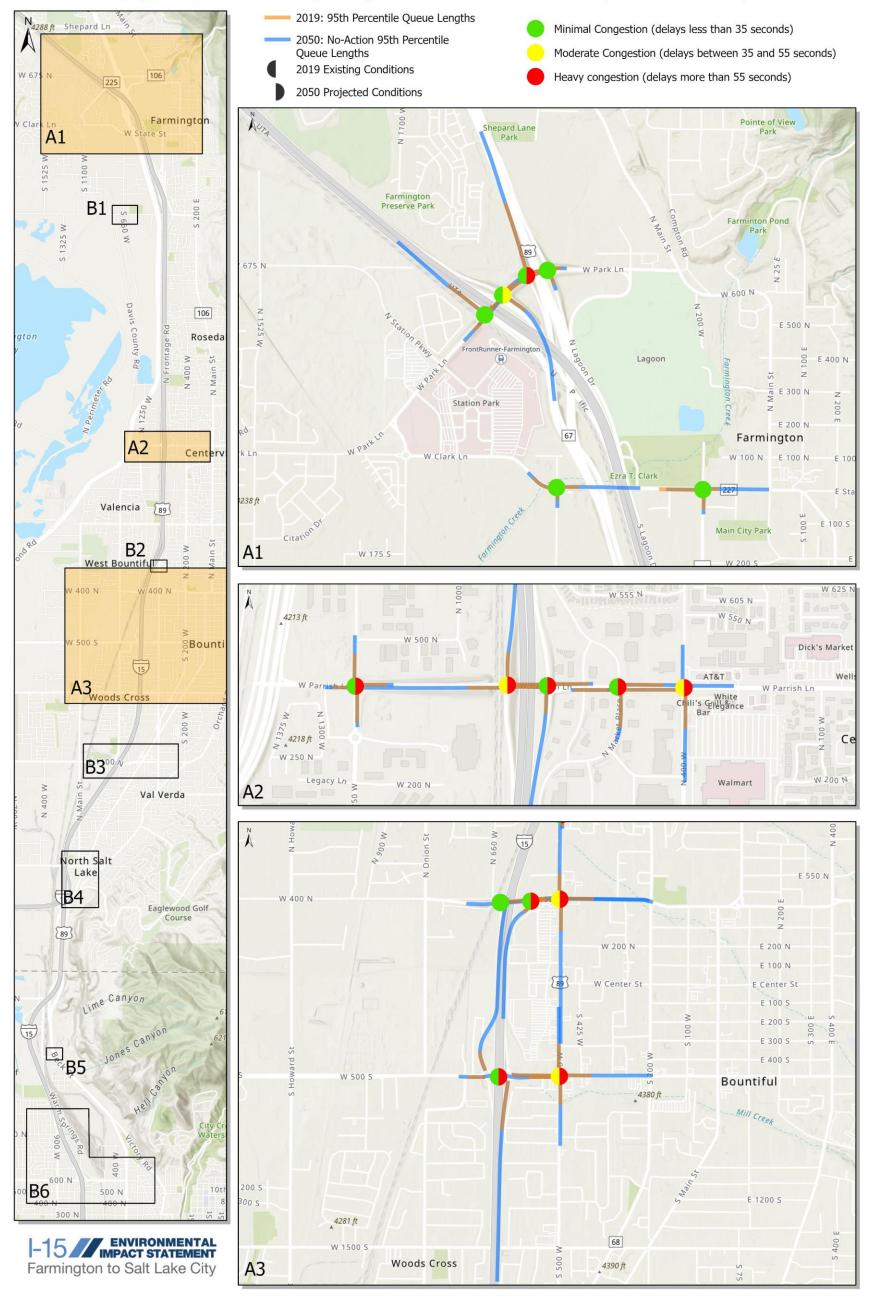
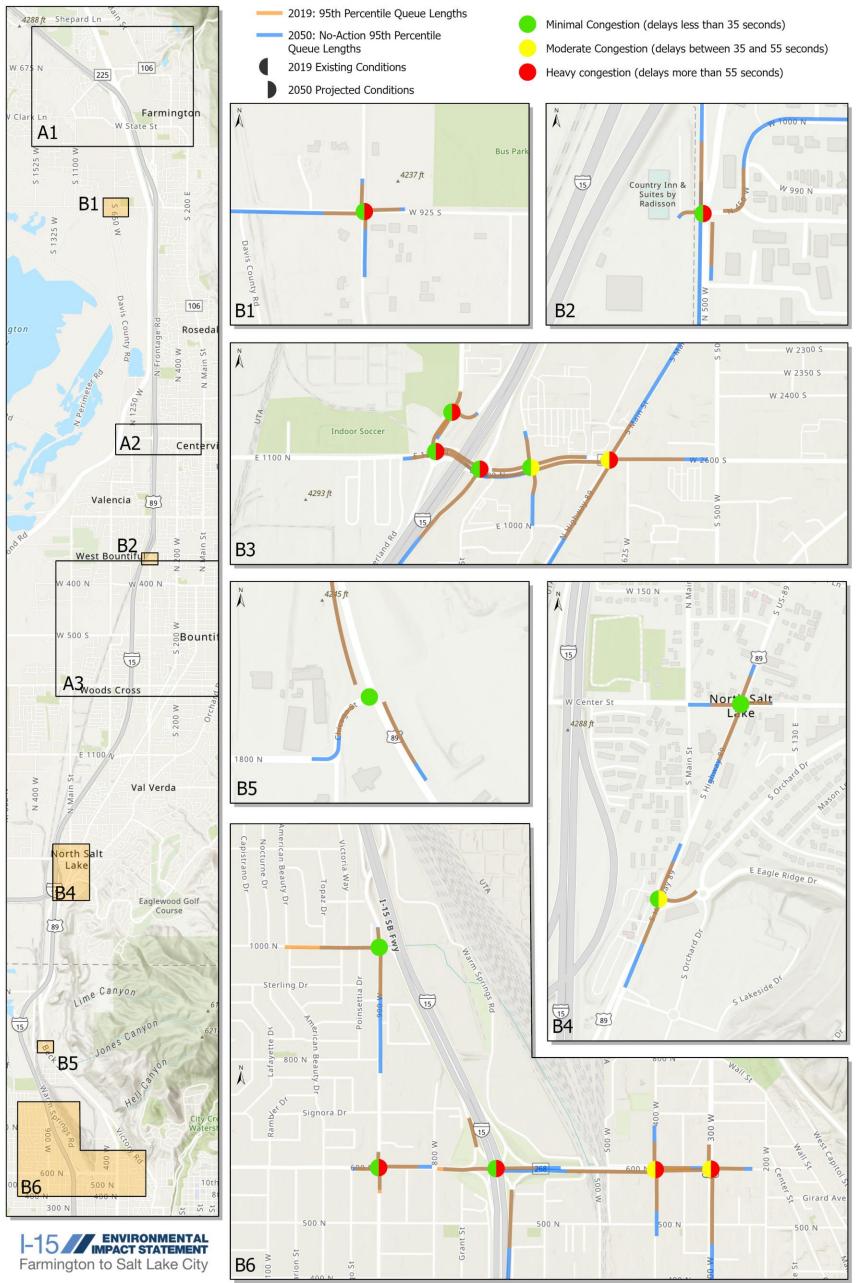



Figure 6-1: Existing (2019)/2050 No-Action Traffic Operations Comparison (1 of 2)

Existing (2019)/No-Action (2050) PM Peak Hour Traffic Operations Comparison

Figure 6-2. Existing (2019)/2050 No-Action Traffic Operations Comparison (2 of 2)

6.2 EXISTING (2019) AND 2050 NO-ACTION I-15 FREEWAY OPERATIONS

6.2.1 I-15 Travel Times

Travel times were measured on I-15 using the VISSIM models for existing (2019) and 2050 No-Action conditions during AM and PM peak travel times. The results of the AM travel time comparison for I-15 southbound is shown in Table 6-2.

I-15 Southbound	Existing (2019) Travel Time (Minutes)	2050 No-Action Travel Time (Minutes)	% Change
6:00 AM	15.9	20.6	30%
7:00 AM	19.2	41.6	117%
8:00 AM	19.1	69.1	262%
9:00 AM	16.7	88.9	432%
Average	17.7	55.1	211%

Table 6-2. I-15 Southbound Mainline Travel Time Comparison

As shown above in Table 6-2, travel times on I-15 are expected to more than triple during the 4-hour AM commute period between 2019 and 2050.

I-15 Northbound	Existing (2019) Travel Time (Minutes)	2050 No-Action Travel Time (Minutes)	% Change
3:00 PM	16.5	37.8	129%
4:00 PM	20.6	64.5	213%
5:00 PM	23.6	78.1	231%
6:00 PM	16.6	84.2	407%
Average	19.3	66.2	242%

Table 6-3. I-15 Northbound Mainline Travel Time Comparison

As shown above in Table 6-3, travel times on I-15 are expected to more than triple during the PM peak period between 2019 and 2050.

For existing (2019) conditions I-15 southbound operates with some congestion toward the middle and south portion of the study area between 7:00 to 9:00 during the AM period. I-15 northbound experiences congested conditions during the PM period between the south end of the traffic study area to south of the I-215 on-ramp where I-15 is widened to four general purpose lanes plus one Express Lane. I-15 northbound also experiences congestion during the PM peak period toward the north end of the project area due to spillback from congestion outside the study. Under 2050 No-Action conditions, heavy congestion occurs on I-15 in the northbound and southbound directions during the AM and PM periods. Congested conditions spread to encompass the full four-hour analyzed period in the AM and PM periods. Traffic on I-15 northbound is heavily metered in 2050 on the south end due to limited capacity with only three general purpose lanes plus one Express Lane creating a bottleneck prior to I-15 being widened to five lanes. The increase of speeds north of 600 North is a result of traffic being severely metered upstream by the bottleneck.

6.2.2 Network Delay

The total vehicle delay for I-15 in the study area was calculated for the existing (2019) and 2050 No-Action scenarios using the Vissim models. Included in the calculation is the latent delay, which is the time vehicles were waiting to enter the network but were denied because of queues that have extended back into the edge of the model. I-15 northbound experiences high latent delay because of insufficient capacity to serve 2050 peak period travel demand toward the south end of the study area. Table 6-4 and Table 6-5 summarize the 2019 and 2050 I-15 network delay during the AM and PM peak periods.

Time	2019 I-15 Delay (Hours)			
mine	Network Delay	Latent Delay	Total Delay	
5:00	460	0	460	
6:00	959	0	959	
7:00	800	0	800	
8:00	190	0	190	
15:00	450	0	450	
16:00	1,142	0	1,142	
17:00	1,051	0	1,051	
18:00	267	0	267	
	5,000			

Table 6-4: 2019 Network Delay

Table 6-5: 2050 Network Delay

Time	2050 I-15 Delay (Hours)			
nme	Network Delay	Latent Delay	Total Delay	
5:00	1,179	234	1,413	
6:00	5,426	1,661	7,086	
7:00	8,047	5,483	13,530	
8:00	6,975	7,778	14,753	
15:00	2,094	498	2,592	
16:00	4,476	3,721	8,197	
17:00	7,014	7,517	14,531	
18:00	6,951	10,229	17,180	
	79,000			

As shown in the above tables, network delay is expected to increase on I-15 in the study area by over 1,400% under 2050 no-action conditions when compared to 2019.

7. CONCLUSIONS

Under existing (2019) conditions I-15 experiences periods of congestion in both the northbound and southbound directions during the AM and PM peak periods. Regional travel between Davis and Salt Lake Counties is expected to increase by more than 50% between 2019 and 2050. Despite several planned roadway improvement projects, including the widening of Legacy Parkway and the FrontRunner double-tracking, travel demand on I-15 is expected to increase by more than 30% over the next 30 years.

With the forecasted increase in travel demand on I-15 it is expected that average travel times will more than triple in 2050 during both the AM and PM peak periods when compared to existing (2019) conditions.

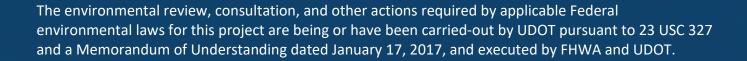
East-west travel demand across I-15 is expected to increase by nearly 40% between 2019 and 2050. Increased east-west travel, in addition to an increase travel between the arterials and I-15, is expected to cause heavy congestion along several of the study corridors, including 600 North in Salt Lake City, 2600 South in North Salt Lake, 500 South and 400 North in West Bountiful, and Parrish Lane in Centerville with average travel times during peak periods more than doubling. Traffic simulation shows queues from the following interchange ramp terminals extending back into mainline I-15:

- 600 North (Salt Lake City)
- 2600 South (North Salt Lake City
- 500 South (West Bountiful)
- 400 North (West Bountiful)
- 500 West (Bountiful)
- Parrish Lane (Centerville)

8. REFERENCES

- Kem C. Gardner Policy Institute (GPI). (2017). Utah's Long-term Demographic and Economic Projections. The University of Utah.
- National Cooperative Highway Research Program (NCHRP). (1982). Report 255.
- Transportation Research Board (TRB). (2016). Highway Capacity Manual, 6th Edition: A Guide for Multimodal Mobility Analysis.

Utah Department of Transportation (UDOT). (2008). Utah Travel Demand Forecasting.


Wasatch Front Regional Council (WFRC). (2019). 2019-2050 Regional Transportation Plan.

FOR

CHAPTER 2: NON-MOTORIZED DEMAND AND OPERATIONS ANALYSIS

MAY 17TH, 2022 PROJECT NO: S-I15-7(369)309 | PIN: 18857

NON-MOTORIZED DEMAND AND OPERATIONS ANALYSIS

April 26th, 2022

I-15 EIS; Farmington to Salt Lake City Project No. S-I15-7(369)309; PIN 18857

1. INTRODUCTION

The Utah Department of Transportation (UDOT) is preparing an environmental impact statement (EIS) for the I-15 EIS; Farmington to Salt Lake City. The study location spans from the northern logical termini just north of the I-15/US-89 system-to-system interchange in Farmington to the southern logical termini just south of the I-15/400 South interchange in Salt Lake City. Figure 1-1 shows the study area, including the locations that provide non-motorized access to cross I-15.

This chapter assesses non-motorized demand and operations within the study area. The location, distance, origin, and destination of non-motorized trips are evaluated in the narrative. Demographic information of populations using non-motorized transportation is also included.

The EIS team also facilitated workshops with key stakeholders, local staff, elected officials, and NGOs. A summary matrix of this can be found in Table 7-2 and a written summary of the outreach is provided in Appendix I: Active Transportation and Community I-15 Purpose and Need Scoping Memorandum.

Figure 1-1. EIS Study Area

2. DATA COLLECTION AND RESEARCH

Data was collected to understand travel behavior, crashes, trip length and purpose, and demographics. Research was conducted to pull in local and regional plans, identify east-west barriers, and define gaps in the multimodal network. The 19 crossings in the study area were assessed through this process. These crossings are listed from north to south in table 2-1. While the majority of crossings provide east-west access for non-motorized transportation trips, Beck Street in Salt Lake City and Main Street in North Salt Lake offer north-south travel for non-motorized trips. Beck Street merges with I-15 but does not cross over or under it. North-south non-motorized travel continues along parallel facilities on the east of I-15.

Crossing	N/S Street	E/W Street	City
Park Lane	I-15	Park Lane	Farmington
State Street	I-15	State Street	Farmington
Glovers Lane	I-15	Glovers Lane	Farmington
Parrish Lane	I-15	Parrish Lane	Centerville
Pages Lane	I-15	Pages Lane	West Bountiful/Bountiful
400 North	I-15	400 North	West Bountiful/Bountiful
500 South	I-15	500 South	Woods Cross/West Bountiful/Bountiful
1500 South	I-15	1500 South	Woods Cross/Bountiful
2600 South	I-15	2600 South	Woods Cross/North Salt Lake/Bountiful
Main Street	I-15	NA	North Salt Lake
Center Street	I-15	Center Street	North Salt Lake
Beck Street	Beck Street	NA	Salt Lake City
900 West	I-15	900 West	Salt Lake City
600 North	I-15	600 North	Salt Lake City
300 North	I-15	300 North	Salt Lake City
North Temple	I-15	North Temple	Salt Lake City
South Temple	I-15	South Temple	Salt Lake City
200 South	I-15	200 South	Salt Lake City
400 South	I-15	400 South	Salt Lake City

Table	2-1.	EIS	Crossing	Locations
-------	------	-----	----------	-----------

2.1 PRIMARY SOURCES

This section describes the primary sources collected. The sources are explained below and include:

- Wasatch Front Regional Council and Local Plans
- StreetLight
- Numetric Crash Data

WFRC and Local Plans

The Wasatch Front Regional Council (WFRC) is the Metropolitan Planning Organization for Davis and Salt Lake County and adjacent urbanized areas. WFRC is responsible for managing and updating the Regional Transportation Plan (RTP), which identifies projects for the future transportation network. Active transportation and transit projects in the RTP are expanded on in section 3.

Local municipal plans were also reviewed, including active transportation plans.

Non-motorized users are often referred to as active transportation (AT) users. AT is non-motorized mobility such as walking and biking. Referenced data sources in this memorandum use the term AT rather than non-motorized users. Therefore, the descriptive terms Active Transportation (AT) and non-motorized mobility are considered synonymous for the purpose of this document.

StreetLight

StreetLight is a data analytics company that uses a wide

array of available transportation data and relies on information from mobile devices, geospatial databases, and machine learning. Table 2-2 provides an overview of the data collected through StreetLight (A more thorough explanation of each type of data collected is provided in subsequent sections).

Methodology: To calculate trips for people walking and biking, StreetLight uses a statistical method based on aggregate cell phone data. StreetLight has developed algorithms and machine learning techniques that utilize several types of data including general Location-Based Services, which can be used to identify travel mode, and well-validated bicycle and pedestrian counts.

Pedestrian and Bicycle Data Validation: Streetlight does not provide specific counts for nonmotorized trips but applies a normalized index to each mode that represents accurate trip volumes. These indices are calibrated for accuracy through reoccurring quality control tests which are measured against permanent pedestrian and bicycle counters in various locations, including San Francisco, where 11 permanent counters are used to verify StreetLight methodology.

Based on published studies validating StreetLight data¹, findings suggest StreetLight is accurate in reporting out travel behavior and trends like Average Daily Traffic (ADT), Origin and Destination (O-D) pairs, trip circuity, trip type, and distance. No manual bicycle or pedestrian counts were collected as part of this effort.

¹Published studies validating StreetLight data; https://www.streetlightdata.com/whitepapers/

Comparison Between Modes: It should be noted that the index for bicycle trips is different from the index for pedestrian trips and the two modes cannot be compared because the numeric scale for pedestrians is different than the one used for bicyclists. What the data does show are comparisons among locations for the same mode.

Reported Years for Data: StreetLight Data from 2019 to October 2021 was used to inform travel behavior and trends for non-motorized users. The 2019 data was selected as the reference year for analysis for most reported data, as 2020 and 2021 data were affected by the pandemic and may not represent normal trends. Analyses that compared year-over-year trends used 2019, 2020, and 2021 data.

Geographic Areas: StreetLight allows data to be gathered at a zone level. Transportation Analysis Zones (TAZs) may be used, or more granular zone boundaries can be created based on TAZs, Census Block Groups, zip codes, or unique polygons identified on a project-by-project basis. A combination of TAZs and unique zones were used for data collection in this the study area. Table 2-2 describes the types of data collected using StreetLight for this I-15 EIS.

Demographics: StreetLight combines the ability to target people's location with publicly available Census data at the Block Group level. Assumptions about whether a person is making a trip from or to home, work, or neither are made through StreetLight's methodology. Once this is determined, the 2010 US Decennial Census and the 2010 American Community Survey are used to assign demographic characteristics to a traveler's assumed home. StreetLight cannot access personal information, so demographic information is not tied directly from mobile devices or from personal information related to devices.

The table below provides an overview of the analysis conducted using the StreetLight data platform.

Data Collected	Description of Data
Zone Activity	StreetLight uses the term "activity" to refer to pedestrian and bicycle trips crossing through a defined zone. Data on trips passing through zones around I-15 crossings was collected and the activity level was reported.
Trip Circuity	A circuity score is applied to pedestrian and bicycle trips. Direct trips have a low score and indirect trips have a high score. The higher the score, the longer the trip is, and the more out-of-direction travel required.
Origin and Destination (O-D)	O-D is transportation term that refers to the start and the end of a single trip. O-D data for non-motorized trips was collected between zones on either side of I-15.
Short Vehicle Trips	Short vehicle trip data was collected for a motorized trip using an I-15 crossing while staying within a 3-mile buffer of the crossing for the entire trip. Quantifying short vehicle trips shows the potential for future mode shift to biking or walking, provided adequate facilities.

Table 2-2. Types of Data Collected Using StreetLight

Data Collected	Description of Data			
Demographic Profiles	Census Block Group data is captured by StreetLight and applied to the origin and destination locations of the trip. Refined algorithms and statistical models are used by StreetLight to determine if the trip's origin location is a home, a job, or whether the trip's origin is neither. Demographic data reported for a trip is tied to the home location, only.			
Trip Attributes	Identifying pedestrian and bicycle trips based on trip purpose (home-based work, home-based other, non-home-based), trips length (pedestrian trips less than 2 miles and bicyclist trips less than 3 miles), time of day, and time of week.			

Numetric

Numetric Data (a safety analytic tool) is managed by UDOT and consists of detailed records of every reported crash in the state. Among the information recorded is whether a bicycle or pedestrian is involved in a crash. This study reviewed data from 2015 through 2021 to analyze pedestrian- and bicyclist-involved crashes near each crossing. A buffer of 0.3 miles around each crossing was selected as the boundary for reporting data.

2.2 DATA COLLECTION ASSESSMENT PROCESS

The following questions were assessed through the existing conditions and data collection process:

- Which crossings of I-15 are most utilized by people walking, biking, and accessing transit?
- How safe, direct, comfortable, and accessible are these crossings?
- What crossings are most used to reach destinations for non-motorized trips?
- Which crossings experience the most short-length vehicle trips?
- Who are the people living in communities along the EIS study area?

3. EXISTING AND PLANNED NON-MOTORIZED FACILITIES

Included in this section is a summary of existing and planned active transportation facilities. Knowing where these facilities exist and where they are planned helps identify gaps and barriers and ensure our future alternatives development aligns with local plans. Also included is a summary on the utilization of crossings and the top origins and destinations for non-motorized trips from people using each crossing and where potential future demand for walking and biking may exist.

3.1 DEFINING COMFORTABLE FACILITIES

One of the identified purposes of this study is to improve comfort and access for non-motorized transportation. WFRC has developed a Level of Traffic Stress (LTS) online map to quantify the stress people feel when they bicycle on different facilities in varying traffic conditions. Factors that contribute to high stress biking facilities include traffic volumes and speeds, bike lane widths and buffers (or lack of), physical or grade separation of bicycle facilities, multi-lane arterials, truck traffic and noise, emissions, and unclear signage and signalization. LTS is a rating system based on the numbers 1-4, where 1 is most comfortable and 4 is the least comfortable. To quantify comfort, LTS uses variables such as traffic volumes and speed.

Table	3-1.	Level	of	Traffic	Stress	LTS
-------	------	-------	----	---------	--------	-----

LTS 1: Comfortable for nearly all riders	LTS 3: Comfortable for confident bicyclists
LTS 2: Comfortable for most adults	LTS 4: Comfortable for only the most confident bicyclists

Comfortable facilities are those with a low level of stress. High-comfort facilities are associated with low vehicle speeds and facilities that are physically separated from traffic. These facilities are intended to be welcoming to people of all ages and abilities, from children on bikes to seniors walking. Examples of high-comfort facilities are multi-use paths that have a physical barrier to separate them from traffic and grade separated bike lanes. An example of a low-comfort facility is a designated shoulder on a road with a speed limit of 40 miles per hour. The higher the traffic speed and the volume, the more separation bicycle and pedestrian facilities need to maintain a high level of comfort.

Figures 3-1 and 3-2 show existing and planned bicycle facilities and the Level of Traffic Stress (LTS).

Figure 3-1. Existing and Planned Bicycle Facilities, WFRC Active Transportation GIS Data Resources

Figure 3-2. Level of Traffic Stress, WFRC Active Transportation GIS Data Resources

Table 3-2 provides information about each crossing's existing and planned active transportation facilities.

City	Location	LTS	Speed Limit	Pedestrian Facilities	Bicycle Facilities	Planned Facilities
	Park Lane	4	45 mph	There are no pedestrian facilities.	There are no bicycle facilities at the I-15 overpass. Narrow shoulders are located on both sides of the crossing.	A paved path is planned on the south side of Park Lane where it crosses I-15. A planned paved path along the Frontage Road (north- south) has been identified in Farmington City.
Farmington	State 4 35 Street 4 mph	Where State Street crosses I-15, the road is only 30 feet wide and withoutAlong the south side of the crossing, there is the Farmingtonpand without shoulders, bike facilities, or sidewalkCreek Trail, a paved, mixed-use path.ti		A buffered bike lane is proposed for State Street on both sides, starting on the west side of I-15, transitioning to striped bike lanes on both sides to the east of I-15.		
	Glovers Lane	3	35 mph	At the south side of the road, the sidewalk abruptly terminates into a chain-link fence looking over I-15 and the railroad corridor.	There is a wide, grade-separated, paved path on the north side of this crossing that provides a high level of comfort.	A buffered bike lane on both sides is proposed for Glovers Lane.
Centerville	Parrish Lane	4	35 mph	There is a wide multi-use path; however, the width and design are not consistent at the crossing, and barriers create pedestrian visibility concerns with vehicles accessing I-15 via the ramps.	This crossing is the only connection for people on the east side of I-15 to the DRGW and the Legacy Parkway Trail, although a direct connection to the trail does not exist here.	A striped bike lane on both sides is proposed for this corridor, and Centerville City has had discussions about a separated pedestrian bridge at 1000 North to connect directly into the Legacy Parkway Trail. A bike lane and paved path are planned at different
				·		locations along 800 West and Marketplace Drive to

Table 3-2. Overview of Existing and Planned Active Transportation Facilities at Crossings

City	Location	LTS	Speed Limit	Pedestrian Facilities	Bicycle Facilities	Planned Facilities
				There is no buffer between the edge of sidewalk and travel lanes once the barrier is gone at 700 W		the east of I-15. A paved path is planned along 1250 West to the west of I-15.
/Bountiful	Pages Lane	1	25 mph	Sidewalks exist on both sides of the corridor, although they are inconsistent in width.	There are no bicycle facilities on the segment under I-15.	A striped bike lane on both sides of the road is planned for Pages Lane.
West Bountiful /Bountiful	400 North	4	35 mph	East of I-15, sidewalks are located on either side of 400 North, but only the north side has continuous sidewalks at the crossing.	No bicycle facilities exist, and the whole corridor lacks dedicated bicycle infrastructure.	
Woods Cross / West Bountiful /Bountiful	500 South	3	45 mph	At the I-15 crossing a 250' section of sidewalk is located in the center of the road and this is the only means for a pedestrian to walk from one side of I-15 to the other. The geometry of the intersection requires pedestrians to cross traffic several times to get through the interchange.	There is a shoulder bikeway at this crossing that starts at 500 West and continues to the Legacy Parkway. At the underpass, both pedestrian and bicyclist networks have multi-stage crossings, making it lengthy and time- consuming to use.	An extension of the bike lanes are planned from 500 West to the eastern terminus of 500 South at Davis Boulevard.
Woods Cross/ Bountiful	1500 South	1	25 mph	Sidewalks exist on both sides.	There are no bicycle facilities.	A buffered bike lane on both sides of the road is planned for 1500 South.
Woods Cross/ North	2600 South	3	35-40 mph	There are sidewalks on both sides of the street, but the sidewalk may not	There is a shoulder bikeway on both sides of the street, but they are narrow.	A striped bike lane on both sides of the road is planned for 2600 South, transitioning to a barrier protected bike

City	Location	LTS	Speed Limit	Pedestrian Facilities	Bicycle Facilities	Planned Facilities
				meet ADA compliance in some locations. In addition to multiple pedestrian crossings at interchange ramps, accessing the south sidewalk requires walking between westbound traffic entering I-15 and eastbound traffic.	At the underpass, both pedestrian and bicyclist networks have multi-stage crossings, making it lengthy and time- consuming to use.	lane on both sides of the road east of I-15. A paved path on US-89 (north-south) is planned in this area.
	Main Street	4	25 mph	Sidewalks exist on both sides.	There are no bicycle facilities.	No pedestrian or bicycle facilities are planned.
North Salt Lake	Center Street	3	25 mph	Sidewalks are located on both sides of the road until west of I-15 where the north sidewalk ends and only the south sidewalk continues. The rail corridor west of I-15 creates a barrier for east-west non- motorized travel.	Bike lanes are located on the shoulders and are identified with signage only and lack painted roadway markings. However, faded bike lane symbols can be seen on the shoulders to the east by the crosswalk at Hatch Park.	A paved pathway on Center Street is proposed on one side of the road. A paved path is planned for Beck Street/US-89 (north- south) in North Salt Lake.
Salt Lake City	Beck Street	4	50 mph	There are no pedestrian facilities.	Bike lanes are located on the shoulders and are identified with signage only and lack painted roadway markings. Separate bike multi- use path exists on west side of Frontage Road/east side of US 89 between 2500 North in Salt Lake City to Eagle Ridge	A buffered bike lane along Victory Road and a paved multiuse path along Beck Street are planned.

City	Location	LTS	Speed Limit	Pedestrian Facilities	Bicycle Facilities	Planned Facilities	
					Drive in North Salt Lake.		
	900 West	NA	40 mph	There are no pedestrian facilities.	There are no bicycle facilities.	A bike lane is planned on both sides of 900 West.	
	600 North	4	35 mph	There is a sidewalk on the south side protected by a concrete barrier, although crossing the freeway exit and entry ramps leaves pedestrians vulnerable and exposed.	There are shoulder bikeways from 300 West to 500 West and a bike lane from 500 West to 1400 West.	The City is conducting a corridor study to look at transit, pedestrian, and bicycle facilities on 600 North, west of I-15 and is nearing a preferred concept. The City is in the process of designing a north-south multi-use pathway adjacent to Beck Street that connects Salt Lake and Davis Counties.	
	300 North	2	30 mph	Sidewalks exist on both sides.	Bike lanes exist on both sides.	A buffered bike lane on both sides is planned for 300 North. Salt Lake City will construct a pedestrian bridge over the railroad tracks at 300 North in 2023.	
	North Temple	3	30 mph	Paved path exists both sides.	Bike lanes exist on both sides.	No additional pedestrian or bicycle facilities are planned for North Temple.	
	South Temple	NA	35 mph	A sidewalk exists only on the north side.	There are no bicycle facilities.	A paved path on one side is planned for South Temple.	
	200 South	3	35 mph	Sidewalks exist on both sides.	Bike lanes exist on both sides.	No additional pedestrian or bicycle facilities are planned for 200 South.	
	400 South	4	35 mph	There is no sidewalk on the segment of 400 South that goes over the railroad, and the sidewalk on the segment that goes under I-15 has multi-stage crossings, making it lengthy and time- consuming to use.	There are shoulder bikeways from 300 West to 900 West and a bike lane from 900 West to the West side.	A buffered bike lane on both sides is planned for 400 South.	

4. STREETLIGHT ANALYSIS FINDINGS

This section includes zone activity and trip circuity results using StreetLight data. StreetLight uses the term "activity" to refer to pedestrian and bicycle trips. Zone activity analysis are helpful in finding trends for the utilization of I-15 crossings over time, and trip circuity is useful in determining whether a trip is short and direct or long and indirect with potential gaps and barriers to access.

4.1 ZONE ACTIVITY

Activity zones were defined at each crossing of I-15 to capture user trends and determine how frequently a crossing was utilized. All east-west trips that entered a zone during a trip were captured. North-south trips were screened out to ensure no I-15 trips were captured in the findings. Figure 4-1 shows the pedestrian activity for crossings from 2019 through 2021. As a reminder, StreetLight data does not provide specific volumes to pedestrian and bicycle trips, but instead provides an index score to indicate level of use. Pedestrian and bicycle indices cannot be compared against each other but do offer a comparison between locations for the same mode.

As shown in Figure 4-1, the most utilized crossings by pedestrians in the study area were State Street, Parrish Lane, 500 South, 1500 South, 2600 South, 300 North, and North Temple.

Overall, pedestrian activity in Woods Cross, West Bountiful, and Bountiful increased during the last three years. At the 2600 South crossing in Woods Cross/North Salt Lake/Bountiful, pedestrian trips almost doubled between 2019 and 2020. However, between 2019 to 2021, a decrease in pedestrian activity was observed around crossings in Salt Lake City.

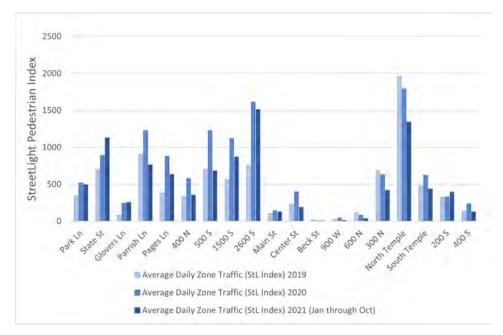


Figure 4-1. Pedestrian Activity at Crossings (2019-2021)

Figure 4-2 shows bicycle activity for crossings from 2019 through 2021. The most utilized crossings by bicyclists were Parrish Lane, Pages Lane, 300 North, and North Temple.

From 2019 to 2021, the Salt Lake City crossings of 300 North and North Temple were utilized by bicyclists more than other crossings in the study area. After 2020, all locations except 2600 South experienced a decrease in bicycle activity.

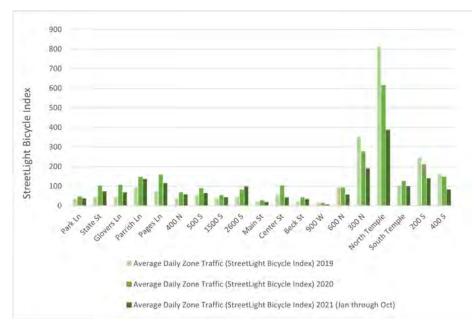


Figure 4-2. Bicycle Activity at Crossings (2019-2021)

Beck Street's North South Connection

For non-motorized transportation users, Beck Street is one of the only north-south routes that connects Salt Lake City to North Salt Lake, but it has low usage from pedestrians and bicyclists. To the east of Beck Street there is a paved path alongside a frontage road that is used by a mining operation. Accessing the paved path requires traveling along the frontage road which can mean traveling alongside the large vehicles used by the mining operation. Beck Street is one of the few roads that may pull traffic from I-15 to enter and exit Salt Lake City. Vehicles heading along Beck Street are traveling at speeds of 50 mph. The closest road that offers protection from high speeds is over a mile to the south of the frontage road access. Along this segment of Beck Street there are no sidewalks and only a striped shoulder marked with a bicycle symbol for protection.

The high bicycle and pedestrian activities on crossings are likely related to adjacent land uses (see Figure 4-3). For example:

- State Street is the closest connection to Lagoon Amusement Park, Farmington Junior High School, and Farmington Elementary School to the east of I-15; and Farmington Station Park to the west of I-15. It also connects people to the highly utilized Legacy Parkway Trail.
- Parrish Lane is the only close connection for people on the east side of I-15 to access the Denver and Rio Grande Western Rail Trail and the Legacy Parkway Trail on the west side of I-15. The closest northern connection is Glovers Lane at approximately 3 miles and the closest southern connection is approximately 1 mile at Pages Lane. It also connects people who live on the west side of I-15 to goods and services in the commercial district to the east.
- Pages Lane provides a direct connection to the Legacy Parkway Trail.
- 1500 South offer east-west connectivity that does not require navigating an interchange and provides a more direct trip for nonmotorized users.
- 500 South sees higher pedestrian trips due to its proximity to the FrontRunner Woods Cross Station and commercial zones on the east side.
- 2600 South connects the commercial zone on the east and the residential zone on the west side of I-15.
- 600 North connects residential neighborhoods on the west to the downtown core and TRAX and FrontRunner on the east.

- 300 North provides a fairly direct connection between residential neighborhoods and the downtown core without requiring a user to navigate an interstate interchange. It also is a route for students to access West High School.
- North Temple provides a separated crossing with comfortable non-motorized facilities and is a direct connection to the downtown core as well as several transit rail lines.
- 200 South is a grade separated crossing, and while sidewalks are narrow, this is a fairly comfortable connection for non-motorized users.
- The 400 South viaduct connects social services, commercial, and dense residential on both sides of the interstate.

North Temple as an Outlier

North Temple is an example of a crossing that provides connected and comfortable facilities for non-motorized travelers. Wide paved-use paths, striped bike lanes, and direct connections to frequent transit makes this crossing the most utilized in the study area by pedestrians and bicyclists.


Because of the high use of North Temple compared to all other crossings in the study area, the remainder of this chapter has omitted it from the majority of the StreetLight findings; it minimizes the results of the other crossings. The goal of this data collection and comparison is to identify crossings that need improvements to non-motorized facilities.

4.1.1 StreetLight Trip Circuity Analysis

Trip circuity refers to how many turns, or how indirect, travel is between points A and B. Pedestrians may have circuitous routes from points A to B because of gaps, barriers, or safety concerns.

When StreetLight calculates trip circuity, a number between 0-6 is applied to the analysis. This is a numeric rating that represents the actual length of the trip compared to the ideal "as the crow flies," or linear trip length. As Figure 4-4 shows if a trip is twice as long as the linear distance it receives a trip circuity score of 2, if a trip is 4 times as long as the linear distance it has a circuity score of 4.

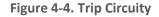


Figure 4-5 below shows pedestrian activity for trip circuity of level 4+ was highest on State Street, Parrish Lane, 500 South, 1500 South, 2600 South, 300 North, and South Temple.

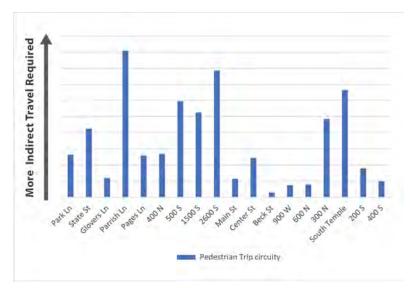


Figure 4-5. Pedestrian Trip Circuity for Level 4 and Higher

Figure 4-6 below shows bicyclist activity for trip circuity of level 4+ was highest on Pages Lane, 600 North, 300 North, South Temple, 200 South, and 400 South.

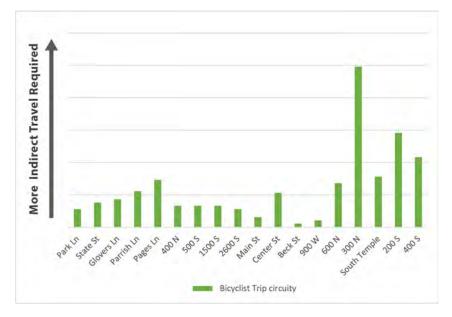


Figure 4-6. Bicyclist Trip Circuity for Level 4 and Higher

4.2 CROSSINGS USED FOR TRIPS TO TOP ORIGINS AND DESTINATIONS

A combination of Transportation Analysis Zones (TAZs) and unique polygons were used for data collection across the study area. Origin and Destination (O-D) trips for pedestrians and bicyclists were identified through StreetLight travel analysis. The focus of the analysis was to determine O-D trips that began in a zone on one side of I-15 and ended in a zone on the opposite side of I-15. This information is valuable because it helps identify which zones have more non-motorized travel activity than other zones along the study area. It also shows which crossings area being most used for non-motorized trips.

Lagoon Amusement Park.

4.2.1 Top Crossings Used For Pedestrian Trips

Figure 4-7 shows the most used crossing locations for O-D

and the locations of the O-D zones are discussed below:

pedestrian trips in 2019. The crossings most frequently used

Farmington: The State Street crossing provides a connection between the zone on the west that has the Station Park shopping center and Frontrunner Farmington Station and the zone to the east that has

- **Centerville:** The Parrish Lane crossing provides a connection between the high-density housing and commercial zones located on the east and west side of I-15. This is also a highly utilized connection to the Denver and Rio Grande Western Rail Trail and the Legacy Parkway Trail.
- Bountiful/West Bountiful: The 500 South crossing connects the commercial zone on the east and the residential zone and FrontRunner Woods Cross Station on the west.
- Woods Cross: Both the 1500 South and 2600 South crossings are frequently used for trips that go between the commercial/residential zones on the west and the commercial zone on the east and are potentially used for trips to Woods Cross High School and South Davis Junior High School on the east side of I-15.
- Salt Lake City: The 600 North, 300 North, and South Temple crossings are frequently used for pedestrian trips between the residential zones on the west and the downtown core on the east side of I-15.

I-15 IMPACT STATEMENT Farmington to Salt Lake City

Figure 4-7. Locations of Crossings Used by Top O-D Pairs Across I-15 for Pedestrian Trips (2019)

4.2.2 Top Crossings Used for Bicycle Trips

Figure 4-8 shows the most used crossing locations for O-D bicycle trips in 2019. The crossings most frequently used and the locations of the O-D zones are discussed below:

- Farmington: The State Street crossing provides a connection between the zone on the west that has the Station Park shopping center and Frontrunner Farmington Station and the and the zone to the east that has Lagoon Amusement Park.
- **Centerville:** The Parrish Lane crossing provides a connection between the high-density housing and commercial zones located on the east and west side of I-15. This is also a highly utilized connection to the Denver and Rio Grande Western Rail Trail and the Legacy Parkway Trail.
- Bountiful/West Bountiful/Woods Cross: The 500 South and the 1500 South crossings connects the commercial zone on the east and the residential zone and FrontRunner Woods Cross Station on the west.
- Woods Cross: The 2600 South crossing is frequently used for trips that go between the commercial/residential zones on the west and the commercial zone on the east.
- Salt Lake City: The 600 North and 300 North crossings are frequently used for bicycle trips between the residential zones on the west and the downtown core on the east side of I-15.

Figure 4-8. Locations of Crossings Used by Top O-D Pairs Across I-15 for Bicyclist Trips (2020)

4.3 FUTURE DEMAND FOR WALKING AND BIKING

This section includes short vehicle trip findings and activity around park and rides. Short vehicle trips were assessed using StreetLight to determine the potential demand in mode shift if active transportation connectivity is enhanced.

4.3.1 Short Vehicle Trips

Short vehicle trips are trips originating on one side of I-15 and ending on the opposite side of I-15 within a 3-mile radius of a crossing. **All vehicle trips** are trips originating on one side of I-15 and ending on the opposite side of I-15 with no defined trip length. Table 4-1 shows what percentage of all vehicle trips are short vehicle trips. Three miles was selected as the radius because it is about the average distance of a bicycle trip; and a short enough distance that a traveler may be willing to switch from taking the trip in their car, to taking the trip on a bicycle.

Most short vehicle trips happened between Bountiful and Woods Cross. Short vehicle trips were high on Park Lane, State Street, Parrish Lane, Pages Lane, 400 North, 500 South, 1500 South, and 2600 South.

The 1500 South Crossing had the highest percentage of short vehicle trips at 41.6 percent. The second highest was on Pages Lane with 38.2 percent.

All vehicle trips (trips with no defined trip length) were high on Park Lane, 500 South, 2600 South, Beck Street, and 400 South.

As mentioned in section 3.1, there are no bicycle facilities on Pages Lane and 1500 South. This might be the reason for high short vehicle trips on these crossings.

Crossing	Average Daily Short Vehicle Trips	Average Daily All Vehicle Trips	Average Daily Short Vehicle Trips as a Percentage of All Average Daily Vehicle Trips
Park Lane	2,864	27,802	10.30%
State Street	2,811	14,344	19.60%
Glovers Lane	956	6,734	14.20%
Parrish Lane	2,476	17,434	14.20%
Pages Lane	2,821	7,384	38.20%
400 North	2,385	14,455	16.50%
500 South	2,992	23,938	12.50%
1500 South	3,601	8,657	41.60%
2600 South	3,711	31,447	11.80%
Main Street	689	6,693	10.29%
Center Street	1,370	12,928	10.60%
Beck Street	29	28,947	0.10%
900 West	99	5,810	1.70%
600 North	1,289	19,537	6.60%
300 North	1,381	5,851	23.60%
South Temple	691	3,072	22.49%
200 South	1,222	6,639	18.41%
400 South	1,351	25,486	5.30%

Table 4-11. Short Vehicle Trips within a 3-mile Radius and Total Vehicle Trips with no Radius

4.3.2 Park-and-Ride Short Trips for Walking, Biking, and Driving

Four UTA FrontRunner Stations are located in the study area: Farmington Station (near Park Lane and State Street), Woods Cross Station (near 500 South), North Temple Station (near North Temple), and Salt Lake Central Station (near South Temple and 300 North). Zone activity analyses were conducted using StreetLight at each station for pedestrians, bicyclists, and vehicles from 2019 to 2021.

Figure 4-9 shows crossings utilized by pedestrians to access FrontRunner Stations. Crossings used to access stations include Park Lane, State Street, 500 South, 1500 South, 300 North, South Temple, 200 South, and 400 South.

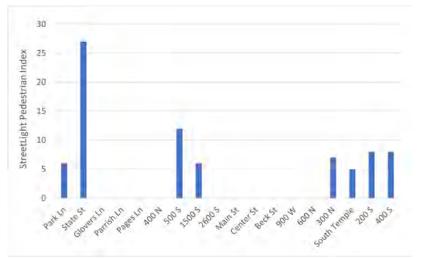
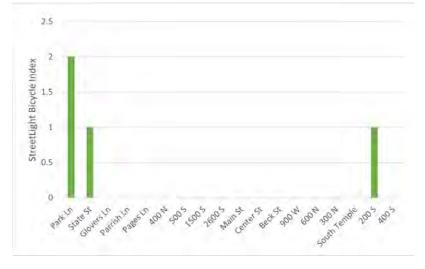



Figure 4-9. Crossings Utilized by Pedestrians to Access FrontRunner Stations

Figure-4-10 shows crossings utilized by bicyclists to access FrontRunner Stations at Park Lane, State Street, and 200 South. The StreetLight Bicycle Index (shown on the y-axis) was low, less than 2. It indicates bicycle activity to FrontRunner stations was not substantial.

The following figures show yearly trends for pedestrian activity (Figure 4-11), bicycle activity (Figure 4-12), and short vehicle trips within a 3-mile radius (Figure-4-13) over three years. For capturing short vehicle trips to stations, park-and-ride (P&R) lots are considered as reference zones. The North Temple Station does not have a designated P&R lot. Salt Lake Central has two lots, one of which is located at the east side of 600 West and is used only for park-and-ride trips to the Salt Lake Central Station. The other one is located on the west side of 600 West and includes stalls designated for UTA employees/vanpools and a pick-up/drop-off area, where parking is only allowed for a short period of time. The Salt Lake Central Station lots were analyzed separately to get more accurate results on short vehicle trips related to FrontRunner stations.

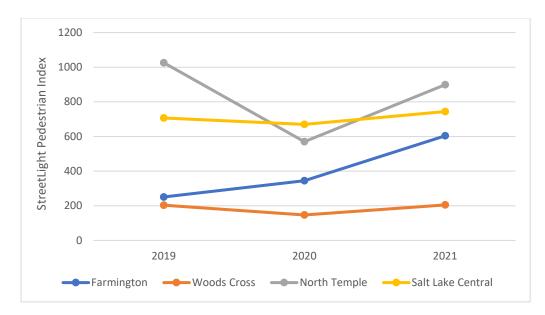


Figure 4-11. Pedestrian Activity to FrontRunner Stations Year Over Year (2019-2021)

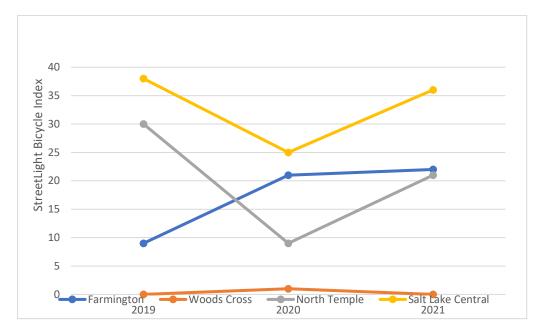


Figure 4-12. Bicyclist Activity to FrontRunner Stations Year Over Year (2019-2021)

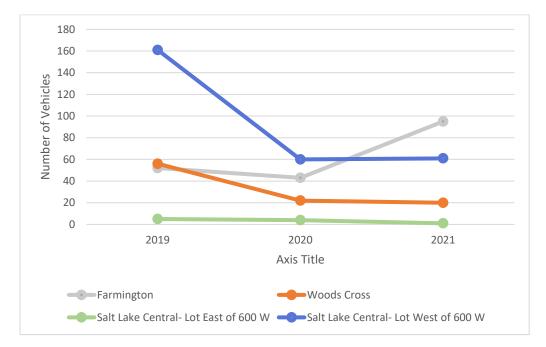


Figure 4-13. Short Vehicle Trips (in a 3-mile Radius) to FrontRunner Station Park and Ride Lots (2019-2021)

FrontRunner Farmington Station

FrontRunner Farmington is the only station with an upward trend of pedestrian activity, bicycle activity, and short vehicle trips in the study area. Pedestrian activity to this station has increased over time and experienced a substantial growth (almost 50%) from 2020 to 2021. Bicycle activity has also increased from 2019 to 2020 and remained stable in 2021. Short vehicle trips to this station increased from 40 to 100 vehicles daily between 2020 and 2021, an unexpected trend based on knowledge of systemwide ridership decline during Covid-19 years. Most short vehicle trips associated with the FrontRunner Farmington station originate from neighborhoods directly east of I-15. This could be from recent residential homes built closer to the station and more in the process of being built.

FrontRunner Woods Cross Station

Pedestrian activity to FrontRunner Woods Cross station has remained stable over time. Bicycle activity to this station was not substantial (as Figure 4-14 shows the StreetLight Bicycle Index was less than 1) and has not changed from 2019 to 2021. In 2019, the daily average number of vehicles traveling from the east of I-15 and ending at the FrontRunner Woods Cross station parking lot was 59, decreasing significantly in 2020 to 22 vehicles. This trend of a low daily average of vehicles carried over into 2021 and is likely a result of the Covid-19 pandemic. Most short vehicle trips associated with this station come from the zones east of I-15.

FrontRunner North Temple Station

The FrontRunner North Temple station had the highest pedestrian activity in 2019 compared to other stations. Pedestrian activity decreased in 2020 due to the pandemic, but in 2021 it increased and was more than other stations. Bicycle activity has experienced the same trend as pedestrian activity; a decrease in 2020 and an increase in 2021. This station is located by mixed-use development and has pedestrian and bicyclist facilities on North Temple. The combination of these two factors makes this station convenient and accessible to many users. As mentioned before there is no park-and-ride lot associated to this station and is excluded from the short vehicle trip analysis.

Salt Lake Central Station

Pedestrian activity to Salt Lake Central Station has remained stable over time. Bicycle activity to this station has decreased substantially (50%) from 2019 to 2020 and then increased in 2021. The Salt Lake Central station has two P&R lots located on the east and west sides of 600 West. Short vehicle trips to the lot east of 600 West remained stable over time. Short vehicle trips to the lot west of 600 West decreased from 160 to 60 vehicles per day between 2019 and 2020 and remained stable in 2021.

4.3.3 Future Growth

Projected future growth in communities along the I-15 study area may produce an increase in demand for non-motorized trips Projected future growth in communities along the I-15 study area may produce an increase in demand for non-motorized trips if the future growth includes mixed land uses, increased housing density, and closer proximity between everyday origins and destinations.

Two common examples of this are proximity between home and work and home and shopping. The need for a connected network of comfortable facilities for walking and biking should be considered.

5. COMMUNITY PROFILES

Understanding who to plan for will help inform the future EIS alternative development process. For example, if most people are using a specific crossing to access a paved multi-use trail for recreational purposes, the facility type recommended at the crossing will likely be different than the recommendation for a crossing if the users are mainly walking to a nearby shopping destination.

The StreetLight data platform uses 2010 US Decennial Census Block Group data and the 2010 American Community Survey demographic data to make assumptions about people who are traveling. Census Block Groups consist of geographic areas containing between 600 and 3,000 people. StreetLight analyzes where a trip starts and ends and then assumes traveler demographics based on the community profile of the origin Block Group. While StreetLight cannot predict exactly who is taking trips based on this, there is likely a strong correlation between the two. The demographic profiles can inform certain assumptions, such as trip purpose or access to a vehicle, by correlating the demographic profiles (e.g., income level, race, education level, etc.) with trip data (e.g., trip origin and destination, time, etc.)

The Travel Demand Model used for traffic analysis uses a similar methodology, as mentioned in Chapter 1, where employment and household data at the TAZ level is a data input for the model.

5.1 DEMOGRAPHIC PROFILES

Diverse populations have diverse needs. Understanding user profiles, family status, income level, and education level can help with planning better networks based on population needs.

5.1.1 Trips by Minority Populations

Figure 5-1 and Figure 5-2 show crossing utilization by populations that live in Block Groups with high percentages of minority populations. Overall, based on publicly accessible demographic data, crossings in Salt Lake City were likely used more by minority populations for walking and biking compared to other crossings based on the reported census demographics. The highest activity is at 600 North; StreetLight assumes almost 55 percent of pedestrians and 45 percent of bicyclists using 600 North to cross I-15 are part of a minority population.

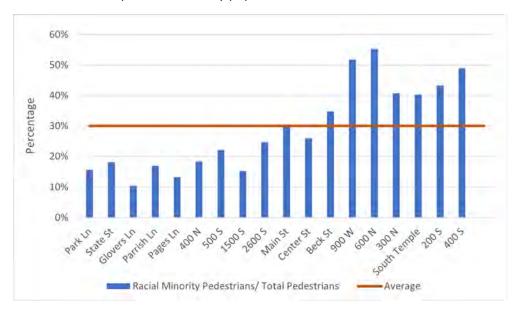


Figure 5-1. Percentage of Ethnic Minority Populations Divided by Total Pedestrian Activity Index

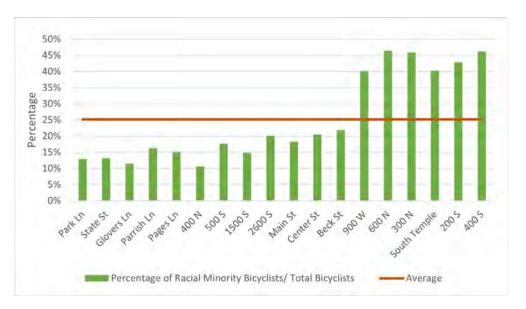


Figure 5-2. Percentage of Ethnic Minority Populations Divided by Total Bicyclist Activity Index

5.1.2 Trips by Income Level

Figure 5-3 and Figure 5-4 show the crossings utilized by pedestrians and bicyclists living in Census Block Groups with income levels less than \$50K. Overall, based on data, high-use crossings for nonmotorized travel in Salt Lake City (900 West, 600 North, 300 North, South Temple, 200 South, and 400 South) were used more by those living in areas reporting annual income as less than \$50K. Figure 4-5 and Figure 4-6 map the crossings most utilized.

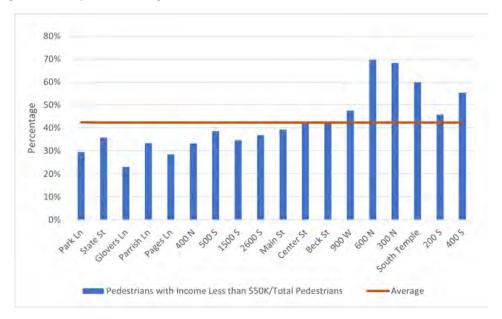


Figure 5-3. Percentage of Pedestrians with Income Less than \$50K Divided by Total Pedestrian Activity Index

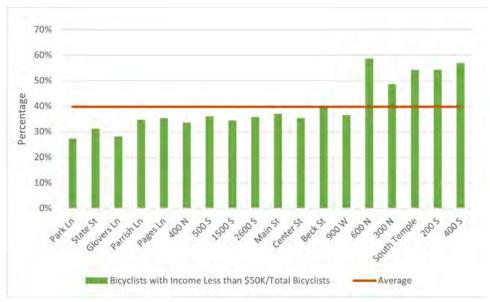



Figure 5-4. Percentage of Bicyclists with Income Less than \$50K Divided by Total Bicyclist Activity Index

Figures 5-5 and 5-6 show potential crossing utilizations (by walking or biking) by those living in Census Block Groups with an average income below \$50k. Those with lower incomes often have less direct or consistent access to vehicles to make trips.

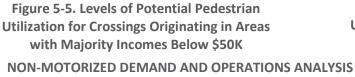


Figure5-6. Levels of Potential Bicycle Utilization for Crossings Originating in Areas with Majority Incomes Below \$50K

5.1.3 Trips by Family Status

Figures 5-7 and 5-8 show the crossings used by people who live in Block Groups with a high percentage of families with children under 18 years old. Those who are ages 18 years or under may be more dependent on non-motorized transportation than many adults. In addition, children themselves may be less visible to drivers.

For all crossings, pedestrian trips that originated or ended up at a Block Group with a high percentage of families with children under 18 years fell within the range of 45 to 65 percent. The one exception to this is Glovers Lane which is close to 80 percent and is a main access route to several schools in the area.

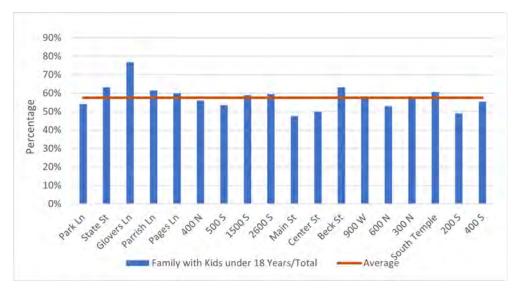


Figure 5-2. Percentage of Families with Children under 18 Years for Pedestrian Mode Divided by Total Pedestrian Activity Index

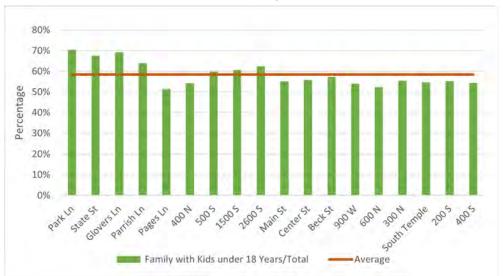


Figure 5-3. Percentage of Families with Children under 18 Years for Bicycle Mode Divided by Total Bicyclist Activity Index

5.1.4 Trip Length and Purpose

StreetLight data provides trip length, time of day, and day of week; assumptions about recreation versus non-recreation trips can be made based on that information. Trips in the northern portion of the study area seem to be primarily recreational trips by people accessing the Legacy Parkway Trail system or other trails in the network These trips are 10+ miles long and are often on weekends and at non-commute times. The southern non-motorized trips, like those in Salt Lake City, indicate a different trip purpose: short mileage trips, mostly to access work or run errands based on time of day and day of week.

StreetLight analyzes trip purpose, based on three trip categories:

- Home-Based Work (HBW), with home as the trip start and work as the trip end point. An example of this is a trip from home to the office.
- Home-Based Other (HBO), has home as the origin and a non-work location as the destination. Examples of this include a trip from home to a grocery store, or from home to the trailhead.
- Non-Home-Based (NHB), where home is not the origin or the destination. Examples of this are a trip from the transit station to the grocery store, or from lunch to the office.

StreetLight data was extrapolated by time of day to understand trip patterns:

- Early AM: 12 a.m. 6 a.m.
- Peak AM: 6 a.m. 10 a.m.
- Mid-Day: 10 a.m. 3 p.m.
- Peak PM: 3 p.m. 7 p.m.
- Late PM: 7 p.m. 12 a.m.

Weekday versus weekend trips are also categorized. Table 5-1 summarizes findings by crossings.

Crossing	Percentage of Pedestrian Trips Less than 2 Miles	Top Trip Purpose for Pedestrians	Most Utilized Time of Day for Pedestrians	Most Utilized Time of Week for Pedestrians	Percentage of Bicycle Trips Less than 3 Miles	Top Trip Purpose For Bicyclists	Most Utilized Time of Day for Bicyclists	Most Utilized Time of Week for Bicyclists
Park Lane	61%	46% NHB	37% Peak PM	51% Weekday	40%	46% HBO	38% Peak PM	62% Weekend
State Street	66%	76% NHB	45% Peak PM	57% Weekend	36%	47% NHB	46% Mid-Day	65% Weekend
Glovers Lane	18%	44% HBO	43% Mid-Day	51% Weekday	18%	44% HBO	29% Peak AM & 29% Mid-Day	66% Weekend
Parrish Lane	84%	65% NHB	37% Mid-Day	60% Weekday	72%	75% NHB	42% Mid-Day	Equal
Pages Lane	79%	47% HBO	34% Peak PM	54% Weekday	25%	45% HBO	34% Mid-Day	53% Weekend
400 North	75%	57% HBO	36% Mid-Day	59% Weekday	36%	44% HBO	40% Mid-Day	58% Weekend
500 South	87%	50% HBO	38% Mid-Day	58% Weekday	56%	47% NHB	38% Peak PM	57% Weekend
1500 South	78%	46% HBO	33% Mid-Day	61% Weekday	45%	50% HBO	40% Mid-Day	52% Weekday
2600 South	86%	45% HBO	32% Mid-Day	56% Weekday	53%	47% NHB	36% Mid-Day	54% Weekend
Main Street	78%	49% HBW	40% Peak PM	71% Weekday	26%	56% NHB	32% Mid-Day	79% Weekday
Center Street	75%	45% NHB	30% Mid-Day	67% Weekday	35%	62% NHB	42% Mid-Day	64% Weekday
Beck Street	72%	97% NHB	65% Peak PM	97% Weekday	14%	70% NHB	37% Peak PM	68% Weekday
900 West	41%	46% HBO	36% Mid-Day	57% Weekday	15%	56% NHB	33% Peak PM	52% Weekday
600 North	68%	40% HBW	27% Peak PM	67% Weekday	31%	45% NHB	31% Mid-Day & 31% Peak PM	56% Weekend
300 North	81%	47% HBO	32% Mid-Day	63% Weekday	31%	47% NHB	33% Mid-Day	53% Weekday
North Temple	84%	42% HBO	30% Peak PM	54% Weekday	38%	62% NHB	32% Peak PM	59% Weekend
South Temple	86%	37% HBO & 37% NHB	29% Late PM	54% Weekday	51%	59% NHB	29% Mid-Day	59% Weekend
200 South	78%	48% NHB	30% Peak PM	57% Weekday	30%	56% NHB	30 Peak PM	58% Weekend
400 South	67%	45% HBO	32% Mid-Day	64% Weekday	20%	56% NHB	32% Mid-Day	56% Weekend

Table 5-1. Percentage of Short Trips, Trip Purpose, Usage Based on Time of Day, and Time of Week

6. COLLISION AND SAFETY ANALYSIS

Pedestrians and bicyclists on roadways are vulnerable in many scenarios including when they are crossing travel lanes, bicycling close to traffic, or on narrow or unprotected sidewalks. When a person is struck by a vehicle at 23mph they have a 10 percent chance of dying, at 32 mph the chance of dying increases to 32 percent, and at 50 mph, their chance of dying is 75 percent². This section reviews pedestrian and bicycle related motor vehicle collisions along the study area.

Numetric Data (a safety analytic tool) is managed by UDOT and consists of detailed records of every reported crash in the state. Among the information recorded is whether a bicycle or pedestrian is involved. This study reviewed crash data from 2015 through 2021 to analyze pedestrian- and bicyclist-involved crashes at each crossing. A buffer of 0.3 miles around each crossing was selected as the boundary for reporting data.

Figure 6-1 shows crashes for the 19 crossings from 2015 through 2021. During this time period, 41 pedestrian-involved and 37 bicyclist-involved crashes were reported. Parrish Lane, Center Street, 600 North, North Temple, and 200 South had the highest number of pedestrian-involved crashes. The highest number of bicyclist-involved crashes are found at Park Lane, Parrish Lane, 400 North, 500 South, and North Temple. High pedestrian use correlates with a higher crash rate in most cases.

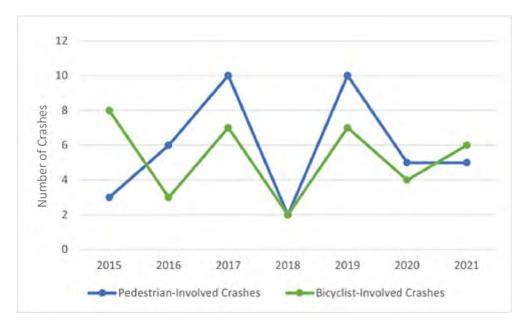


Figure 6-1. Yearly Trend of Pedestrian- and Bicyclist-Involved Crashes in a 0.3-mile Radius from Crossing (2015-2021)

² https://nacto.org/publication/city-limits/the-need/speed-kills/

Figure 6-2 is a heatmap of crashes and shows that the locations with the highest number of crashes are on Parrish Lane and North Temple. On Parrish Lane most crashes occurred at the intersection of 400 West, just east of I-15, where vehicles frequently make right and left turns, creating potential conflicts with pedestrians and bicyclists.

This map also shows the level of severity for each crash. Crash severity refers to the type of injury sustained. The categories of crash severity include No Injury/Property Damage Only, Possible Injury, Suspected Minor Injury, Suspected Serious Injury, and Fatal. There was one pedestrian-involved fatality at 600 North and 900 West, and four suspected serious injuries at following locations:

- Farmington: Glovers Lane and South Frontage Road - Bicyclist-involved
- Centerville: Parrish Lane and 400 West- Bicyclistinvolved
- North Salt Lake: Center Street and SR-89/Main Street- Pedestrian-involved
- Salt Lake City: 400 South and Post Street-Bicyclist-involved

There are also 35 reported crashes categorized as suspected minor injury, 29 possible injury, and 9 no injury/property damage only.

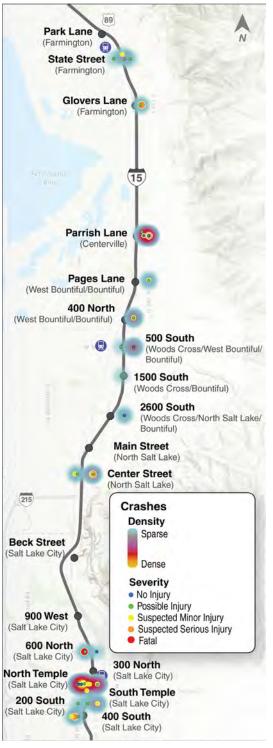


Figure 6-2 Pedestrian and Bicyclist Involved Crashes within a 0.3-mile Radius of Crossings

7. CONCLUSIONS

The evaluation of existing conditions in this chapter has shown locations for north-south non-motorized travel are few and the available connections of 900 West and Beck Street currently provide low comfort facilities to non-motorized users. Fourteen of the crossings are only comfortable to confident or the most confident of bicycle riders, according to their Level of Traffic Stress rating. Many crossings require pedestrians to cross onramps and offramps to get from one side of I-15 to another with little separation from traffic while crossing the road or while walking on sidewalks. Many of the identified planned facilities at these locations would improve safety and comfort levels and add or extend connections to existing facilities for non-motorized users. Facility upgrades may potentially make non-motorized transportation more appealing to a greater number of people, increase non-motorized access to destinations, and possibly remove vehicle trips from the road.

Table 7-1 provides a high-level summary of the data collected for each crossing in the study area. Each crossing is given a checkmark for every one of the following criteria it meets.

- Locations with high pedestrian and bicycle activity.
- Locations where there is a Level of Traffic Stress of 3 or 4. These locations are only comfortable for bicyclists who are confident traveling near high volumes of traffic and traffic moving at fast speeds.
- Locations with a high rate of pedestrian and bicycle related crashes.
- Trips that have a high circuity. These are trips that provide no direct route between an origin and destination and are much longer in actual travel distance than linear distance.
- High O-D pairs. These are crossings utilized along I-15 by people taking trips that originate at a location on one side of I-15 and end at a destination on the other side of I-15.
- Crossing locations that have high amounts of short vehicle trips. These are crossings that are utilized for vehicle trips that stay within a 3-mile radius of the crossing for the entirety of the trip.
- Crossings near FrontRunner stations that are most utilized by pedestrians and bicyclists, and vehicles at park-and-rides to access transit at a station.
- Crossings that are located near areas where there may be a high level of ethnic minority populations that travel by walking of biking.

- Crossings with a high percentage of pedestrian and bicyclist population with an annual income less than \$50K.
- Crossings with a high percentage of short pedestrian and bicycle trips. Walking trips that remain within a 2-mile radius of a crossing for the entirety of the trip and bicycle trips that remain within a 3-mile radius of a crossing for the entirety of the trip are considered short trips.

The checkmarks are totaled for each location at the bottom of the table. Locations with lower totals met less of the criteria listed above. The locations with higher totals met more of the criteria. This matrix provides another way to visualize the data shared in this chapter.

		Park	State	Glovers	Parrish	Pages	400	500	1500	2600	Main	Center	Beck	900	600	300	South	200	400
		Ln	St	Ln	Ln	Ln	N	S	S	S	St	St	St	W	N	N	Temple	S	S
						Crossin	gs with	n High I	Pedestri	an and	Bicyclist	Activity							
	Pedestrian		\checkmark		\checkmark	\checkmark		\checkmark	\checkmark	\checkmark						\checkmark			
	Activity																		
	Bicyclist				\checkmark	✓										✓		~	\checkmark
	Activity																		
					E	cisting Bi	cycle F	acilitie	s with a	High Le	vel of Tr	affic Stre	ss						
Crossing	Comfortable			✓				\checkmark		\checkmark		\checkmark						\checkmark	
Utilization	for only																		
Analysis	Confident																		
	Cyclists																		
	Comfortable	✓	✓		\checkmark		\checkmark				✓		✓	\checkmark	✓				\checkmark
	for only the																		
	Most																		
	Confident																		
	Cyclists																		
						Cr	ossing	s with	a High N	lumber	of Crash	es							
	Pedestrian				\checkmark							\checkmark			\checkmark			\checkmark	
Comfort,	Crashes																		
Directness,	Bicyclist	\checkmark			\checkmark		\checkmark	\checkmark											
_neethess,	Crashes																		
							Cros	sings v	vith Hig	h Trip C	ircuity								

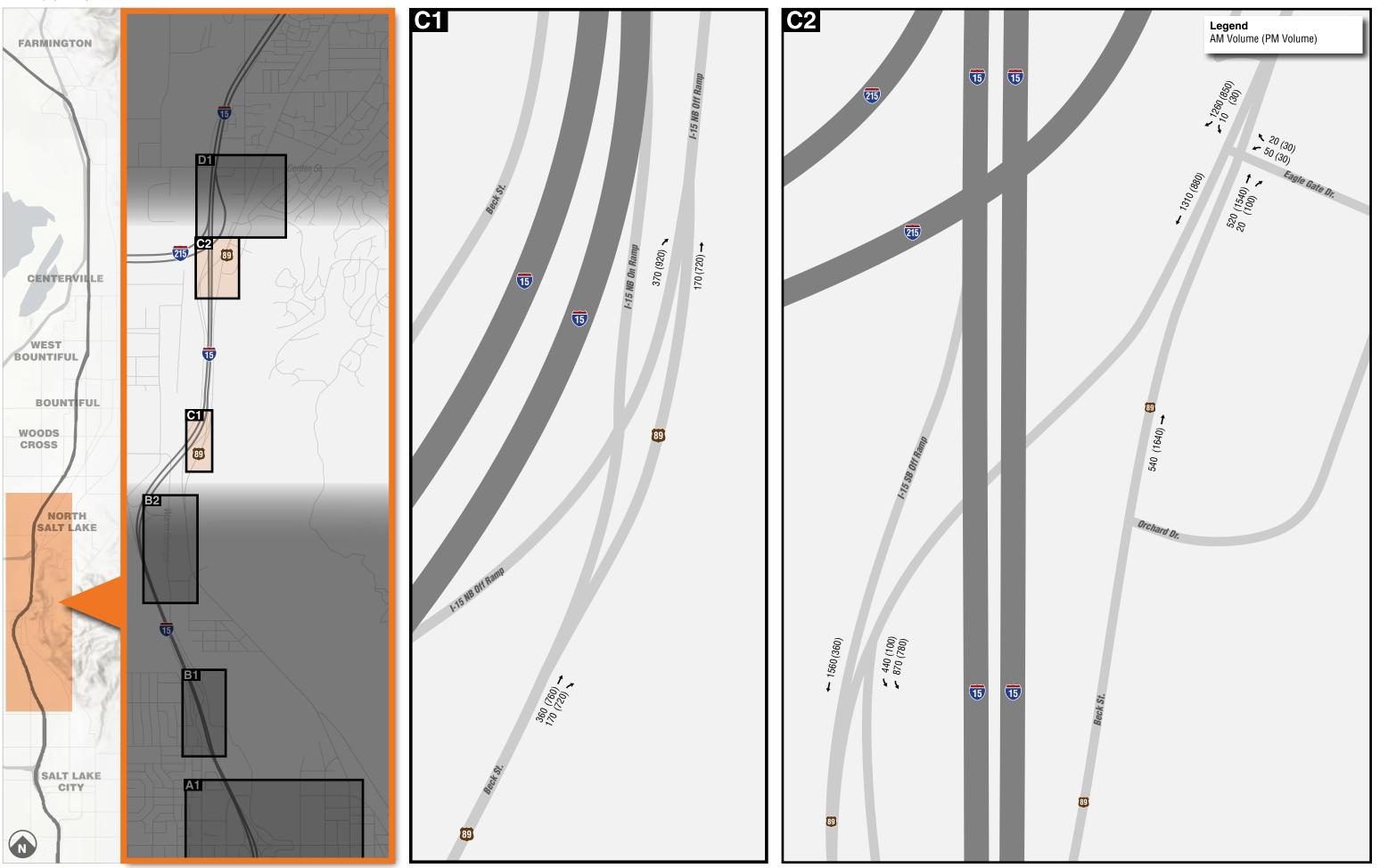
Table 7-1. Data Summary Matrix

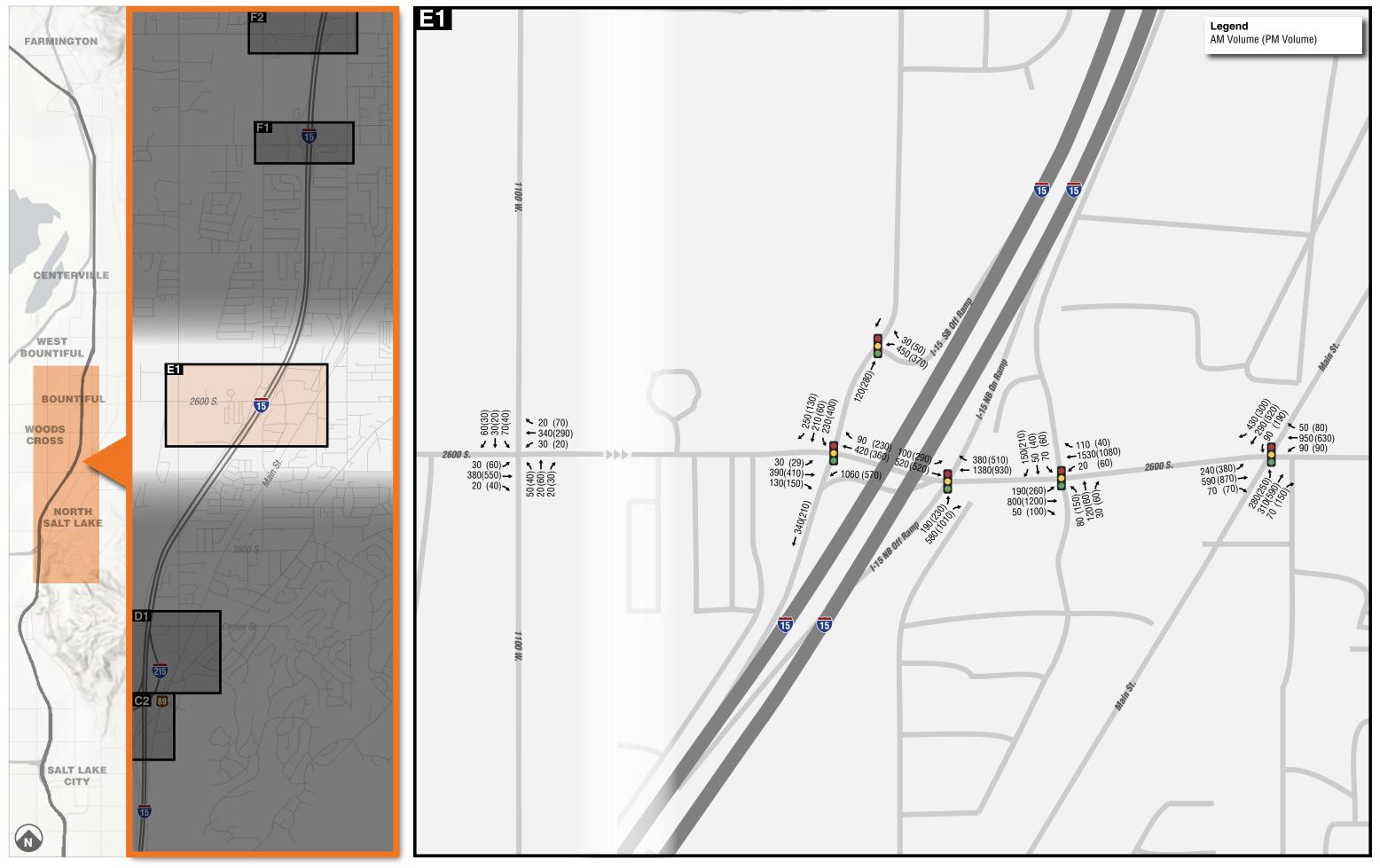
		Park Ln	State St	Glovers Ln	Parrish Ln	Pages Ln	400 N	500 S	1500 S	2600 S	Main St	Center St	Beck St	900 W	600 N	300 N	South Temple	200 S	400 S
and Accessibility	Pedestrian Trip Circuity (4+)		√		~			✓	~	√						~	√		
	Bicyclist Trip Circuity (4+)					\checkmark									✓	✓	~	~	~
Top O-D for							Cros	sings b	etween	Тор О-	D Pairs								
Non-	Pedestrian		✓		\checkmark			\checkmark	✓	✓					~	✓			
motorized Travel	Bicyclist		~		~										✓	~	~	~	
-						(Crossin	gs with	h High S	hort Vel	hicle Trip	S							
Future		✓	✓		\checkmark	\checkmark	\checkmark	~	\checkmark	✓									
Demand for Walking and			Cross	ings Utiliz	ed by Ped	estrian, l	Bicyclis	t, and	vehicles	s at parl	k-and-rid	es to Acc	ess Fror	ntRunn	er Stat	tions			
Biking	Pedestrian	\checkmark	\checkmark					\checkmark	\checkmark							\checkmark	\checkmark	\checkmark	\checkmark
Diking	Bicyclist	\checkmark	\checkmark															\checkmark	
			_	Crossir	igs with a	High Per	centag	e of Et	hnic Mi	nority P	edestria	n and Bic	yclist Po	pulati	on	_			-
	Pedestrian												\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Bicyclist													\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
			Cro	ssings wit	h a High P	ercentag	ge of Pe	edestri	an and	Bicyclist	Populat	ion with	Income	Less th	1an \$5	ОК			
Community	Pedestrian													\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Profiles	Bicyclist														\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
i romes		-			s with a H	-	ntage	of Und	ler 18 Y	ears Old	Pedestr	ian and B	icyclist	Popula	tion				
	Pedestrian		\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark			\checkmark						
	Bicyclist	\checkmark	\checkmark	\checkmark	\checkmark			\checkmark	\checkmark	\checkmark									
					Crossing		High P	ercent	age of S	hort Pe	destrian	and Bicy	cle Trips	5					
	Pedestrian				\checkmark	✓	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	\checkmark			\checkmark	✓	\checkmark	
	Bicyclist	\checkmark	✓		\checkmark		\checkmark	\checkmark	\checkmark	\checkmark							✓		
Tot	tal	7	11	3	13	6	5	10	9	9	2	3	4	4	9	12	10	12	8

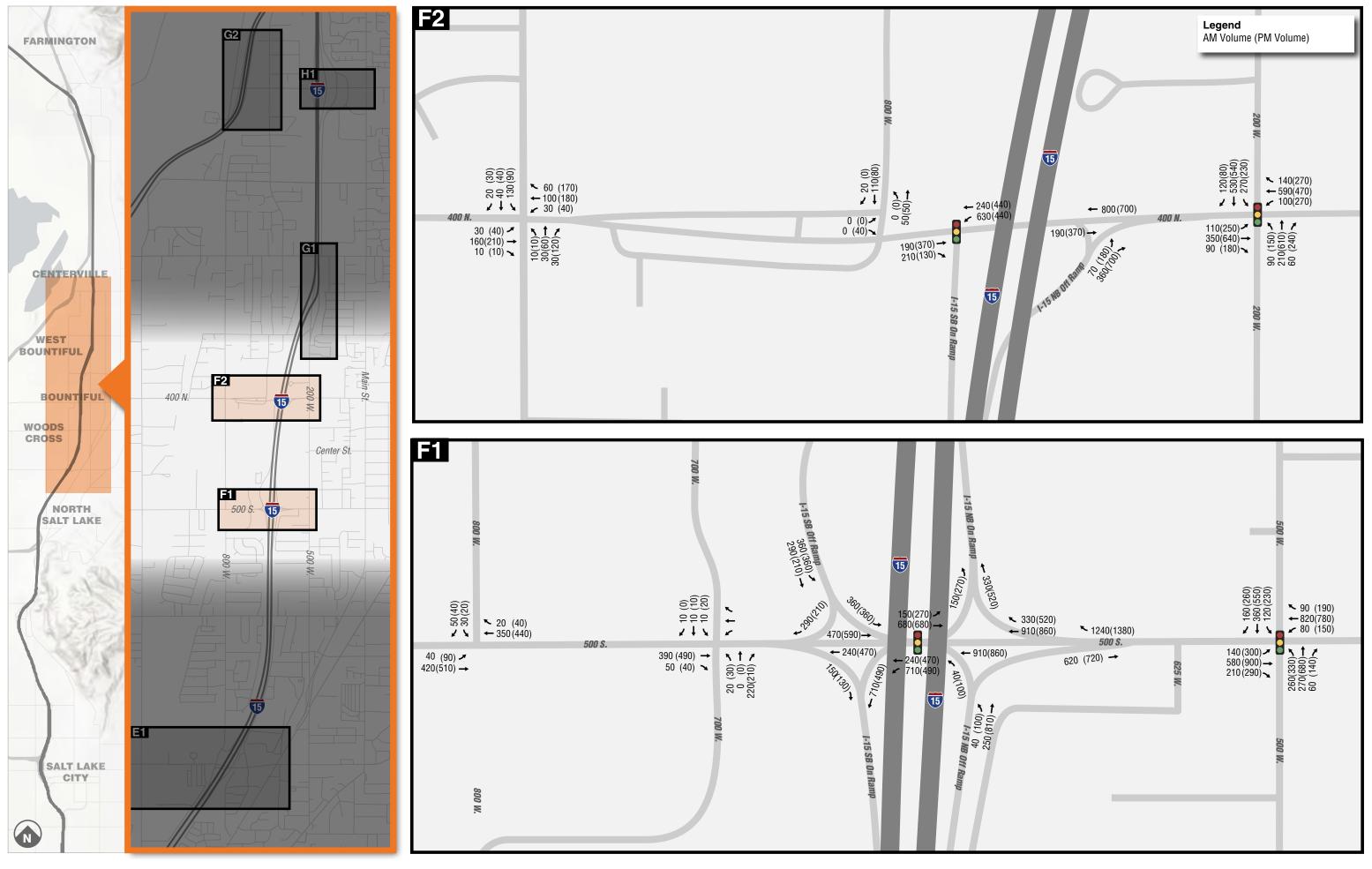
* North Temple was omitted from this summary, to emphasize crossings with greater needs for improvement.

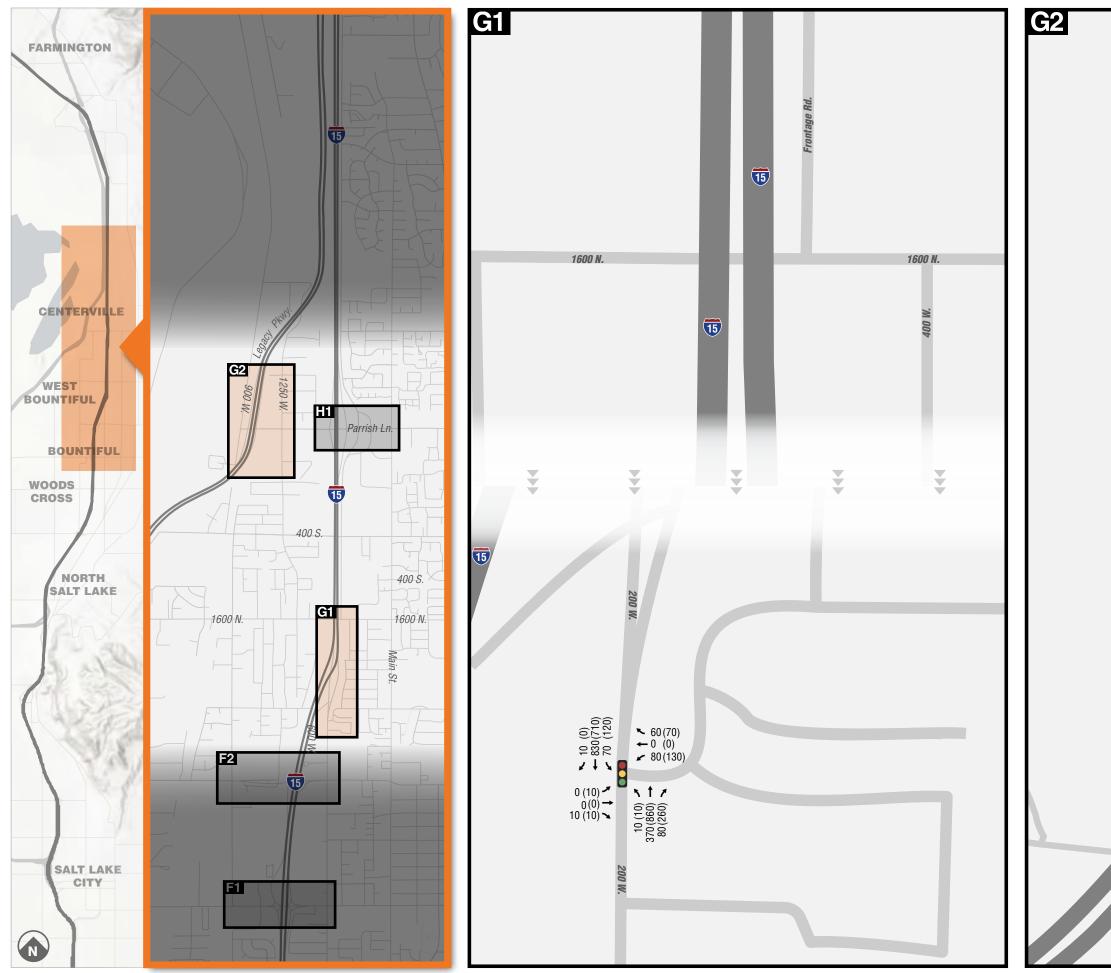
Stakeholder and community input was gathered for specific crossing locations by means of walk audits and workshops conducted by Smart Growth America. This information is summarized below in Table 7-2. A full report from Smart Growth America is in in Appendix I: Active Transportation and Community I-15 Purpose and Need Scoping Memorandum.

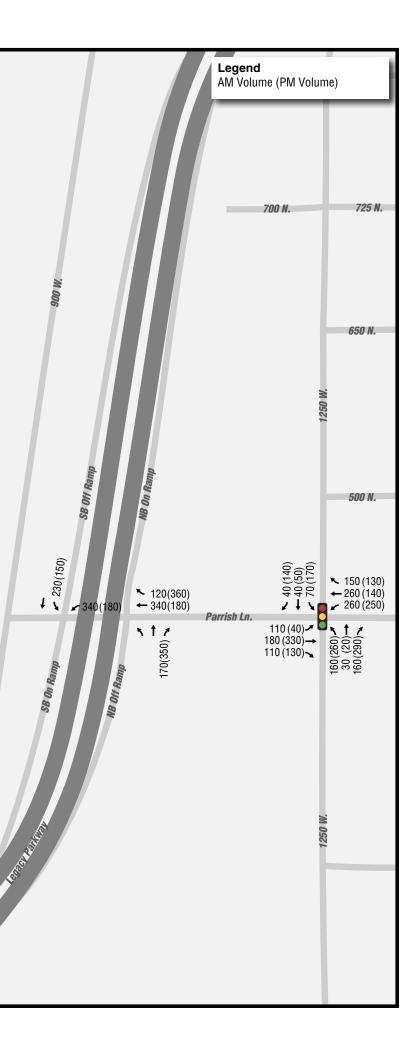

	Park	State	Glovers	Parrish	Pages	400	500	1500	2600	Main	Center	Beck	900	600	300	South	200	400
	Ln	St	Ln	Ln	Ln	Ν	S	S	S	St	St	St	w	Ν	Ν	Temple	S	S
					Stakehol	der Co	mmun	ity Inpu	it on Cro	ossings								
Lack of Transition to Community Context		~				✓		✓	~					✓				
Confusing Diverging Diamonds							~		~									
Visibility Issues		✓		✓		\checkmark	\checkmark		✓									
Maintenance Issues		✓												✓				
Need for a New Bridge														✓				
Long Crossing Issues		✓		✓										\checkmark				
Noise Issues		✓												\checkmark				
Impacts from Truck Traffic		✓									✓			\checkmark				
Need for Improving the Trail Connection	✓		~	~	~	~												
Need for Improving Placemaking	✓			~					~		~			~				
Desire for North-South Connectivity												~						

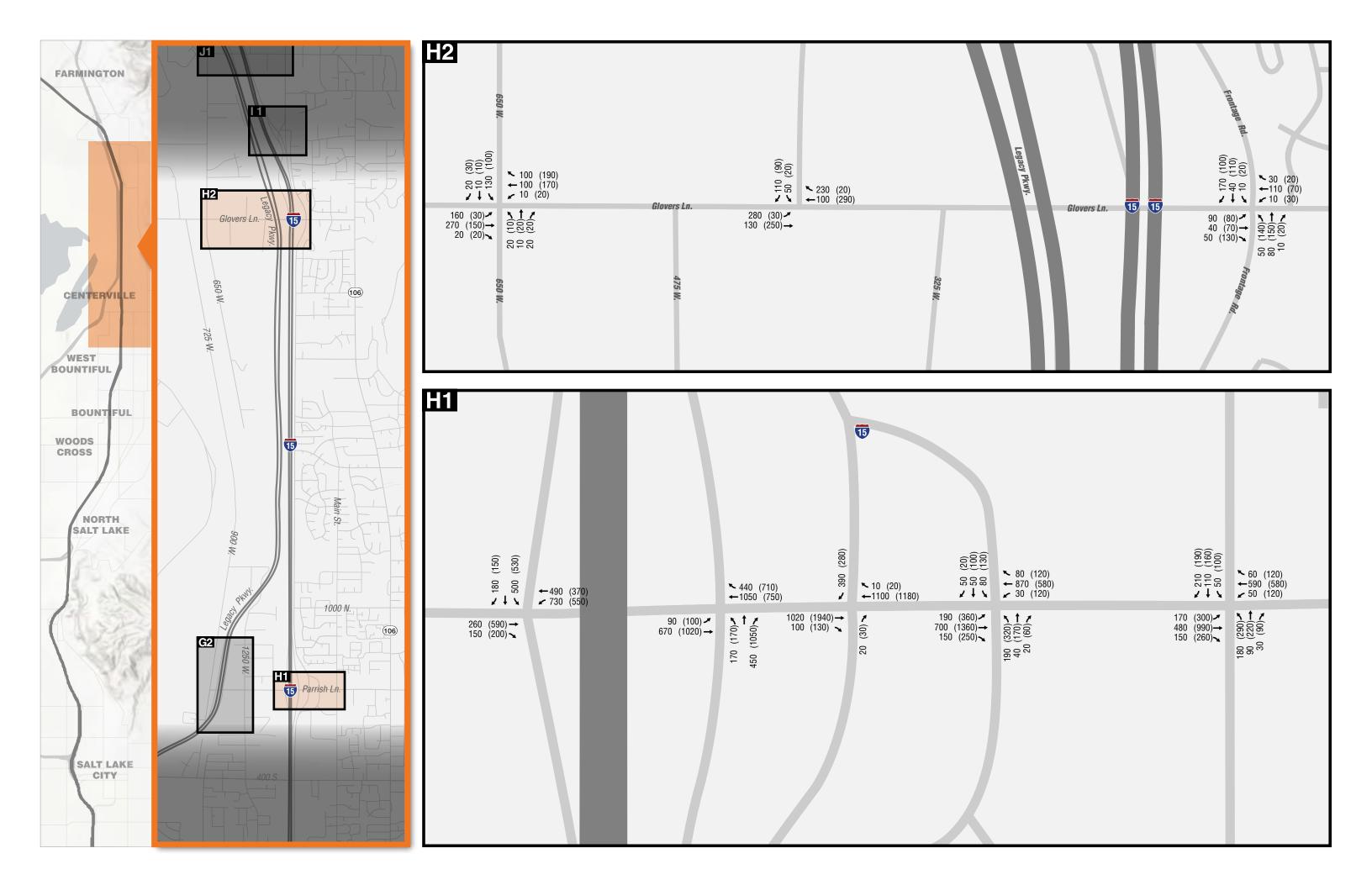

Table 7-2. Stakeholder Community Input

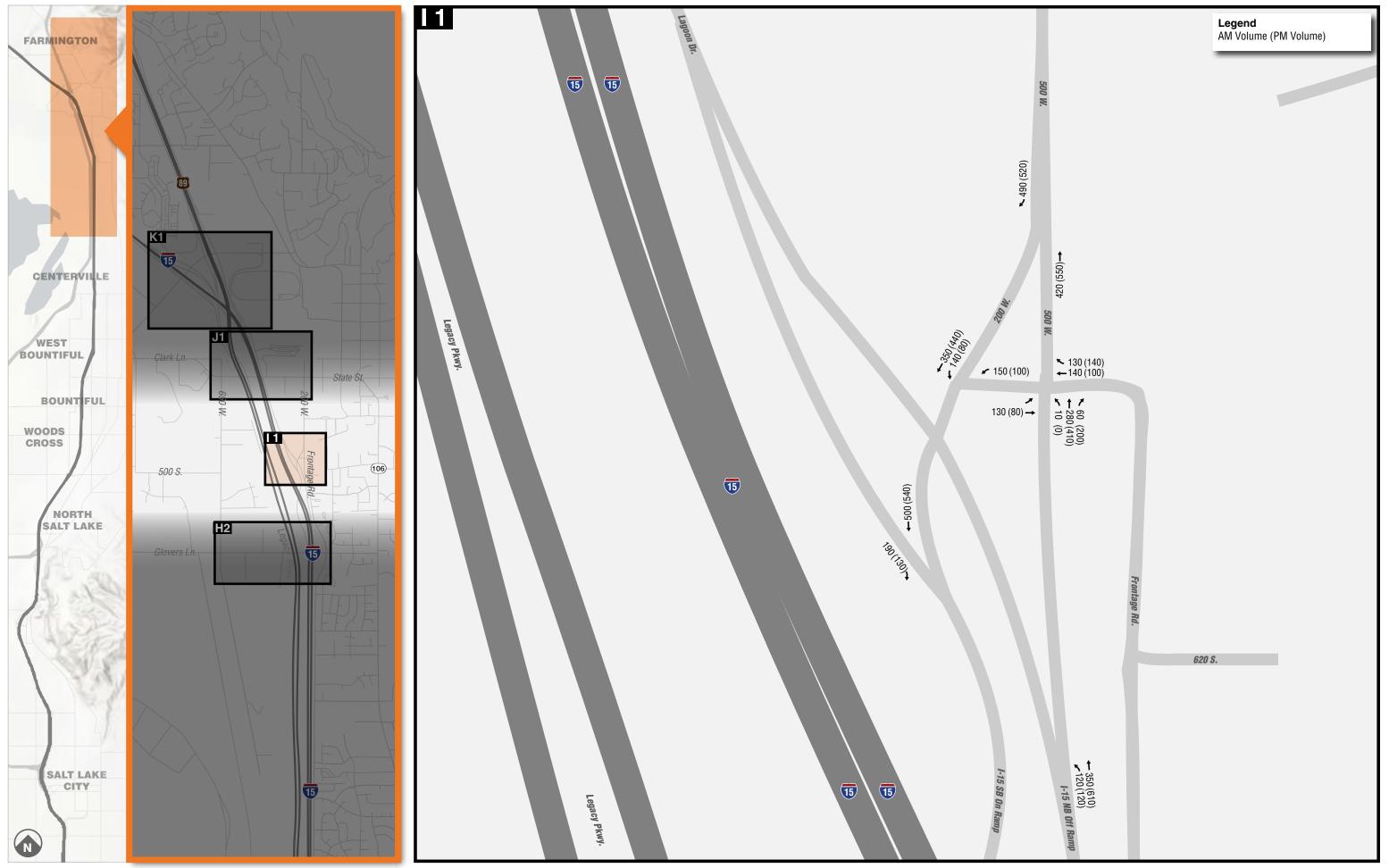

Appendix A Existing (2019) AM and PM Peak Hour Volumes

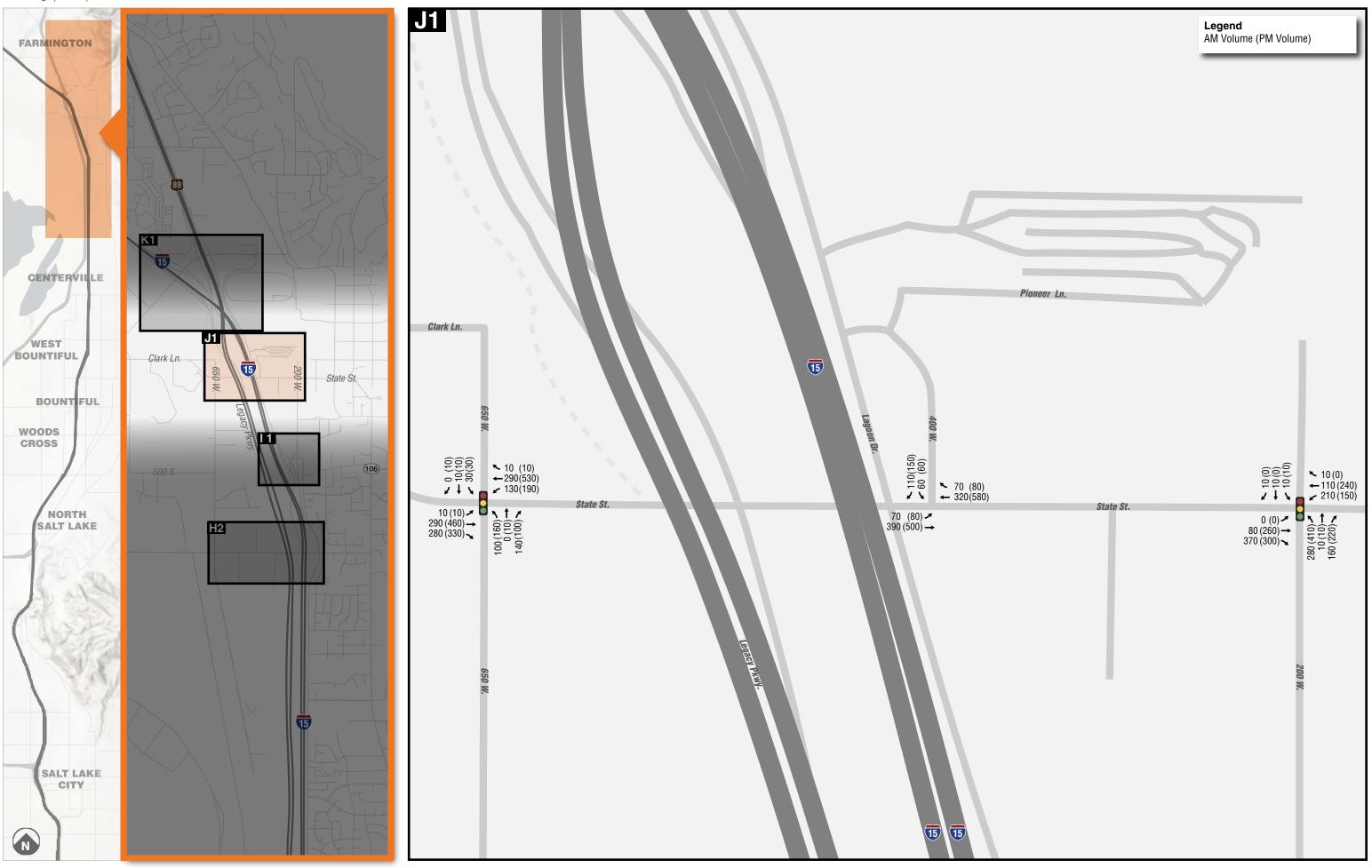


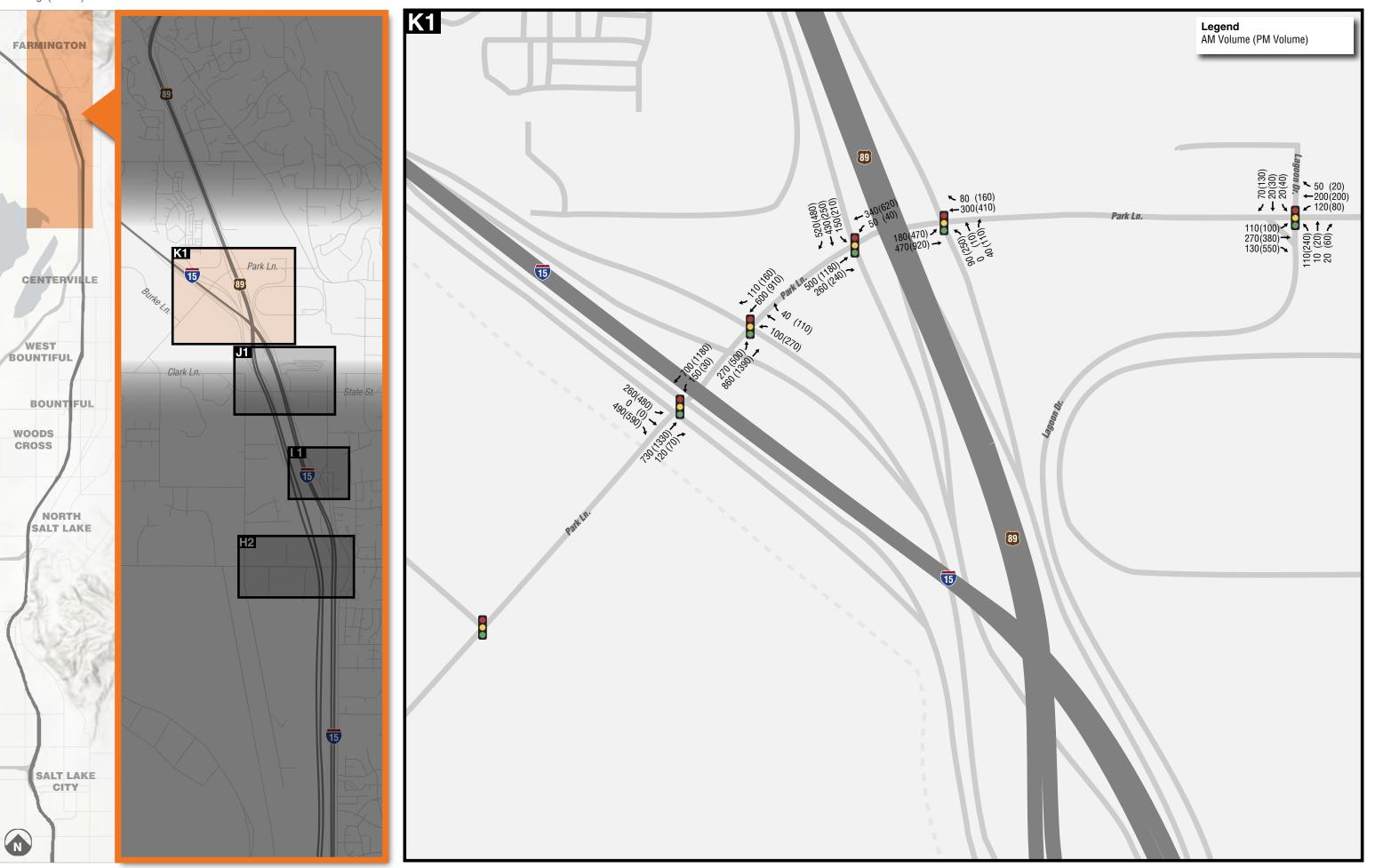


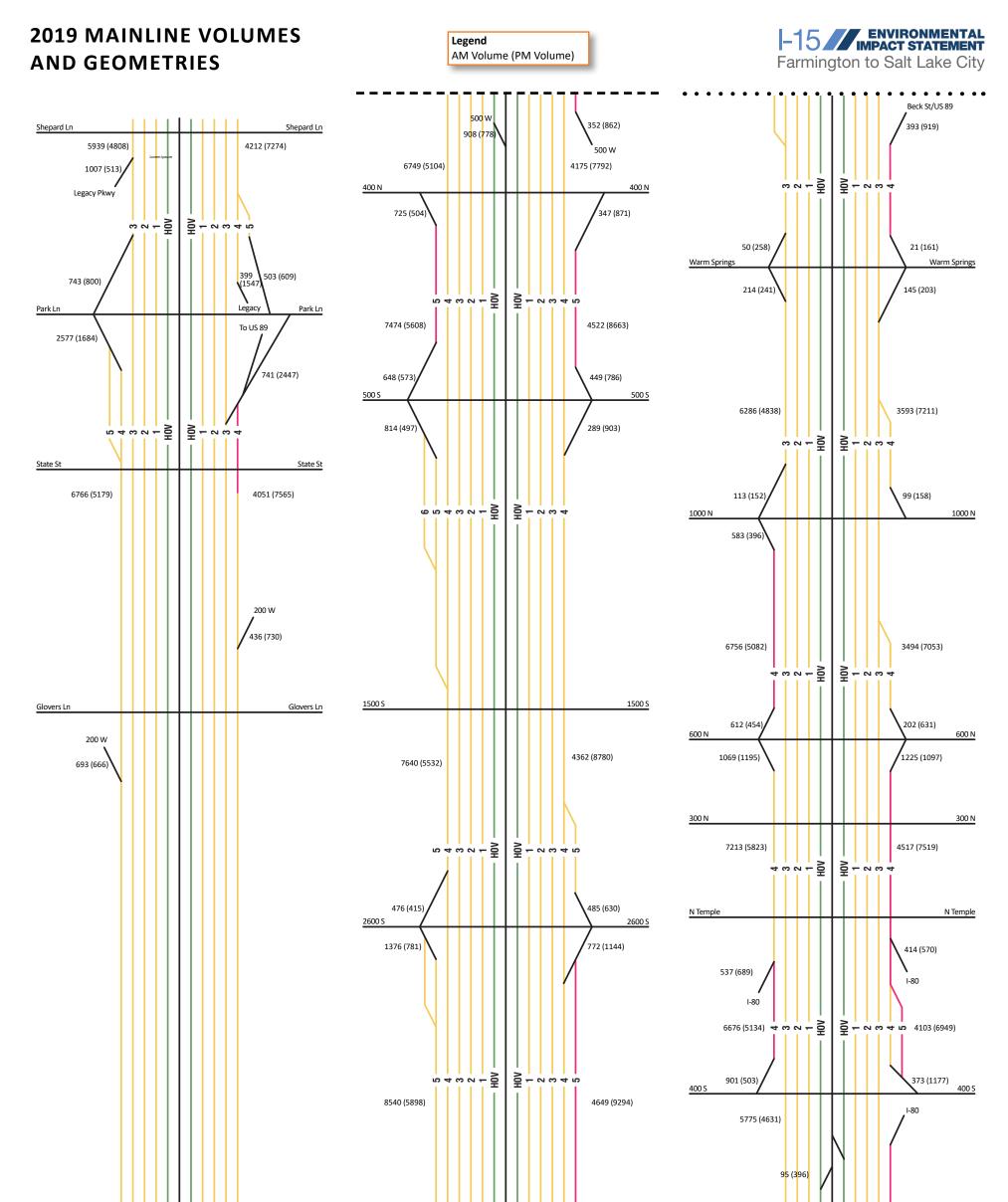


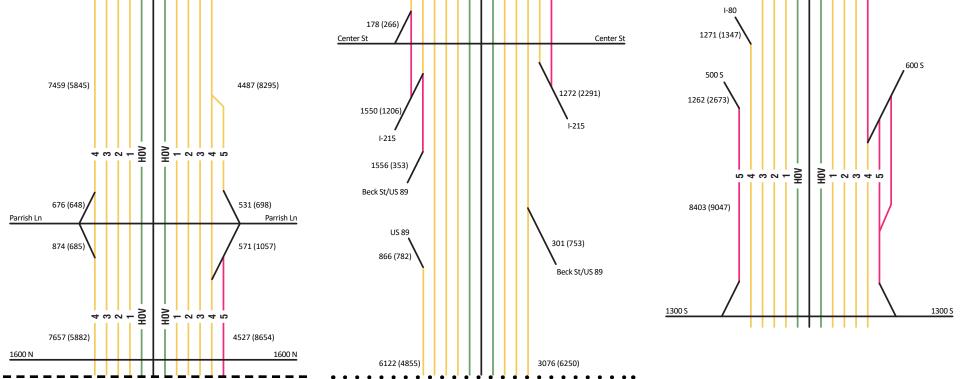


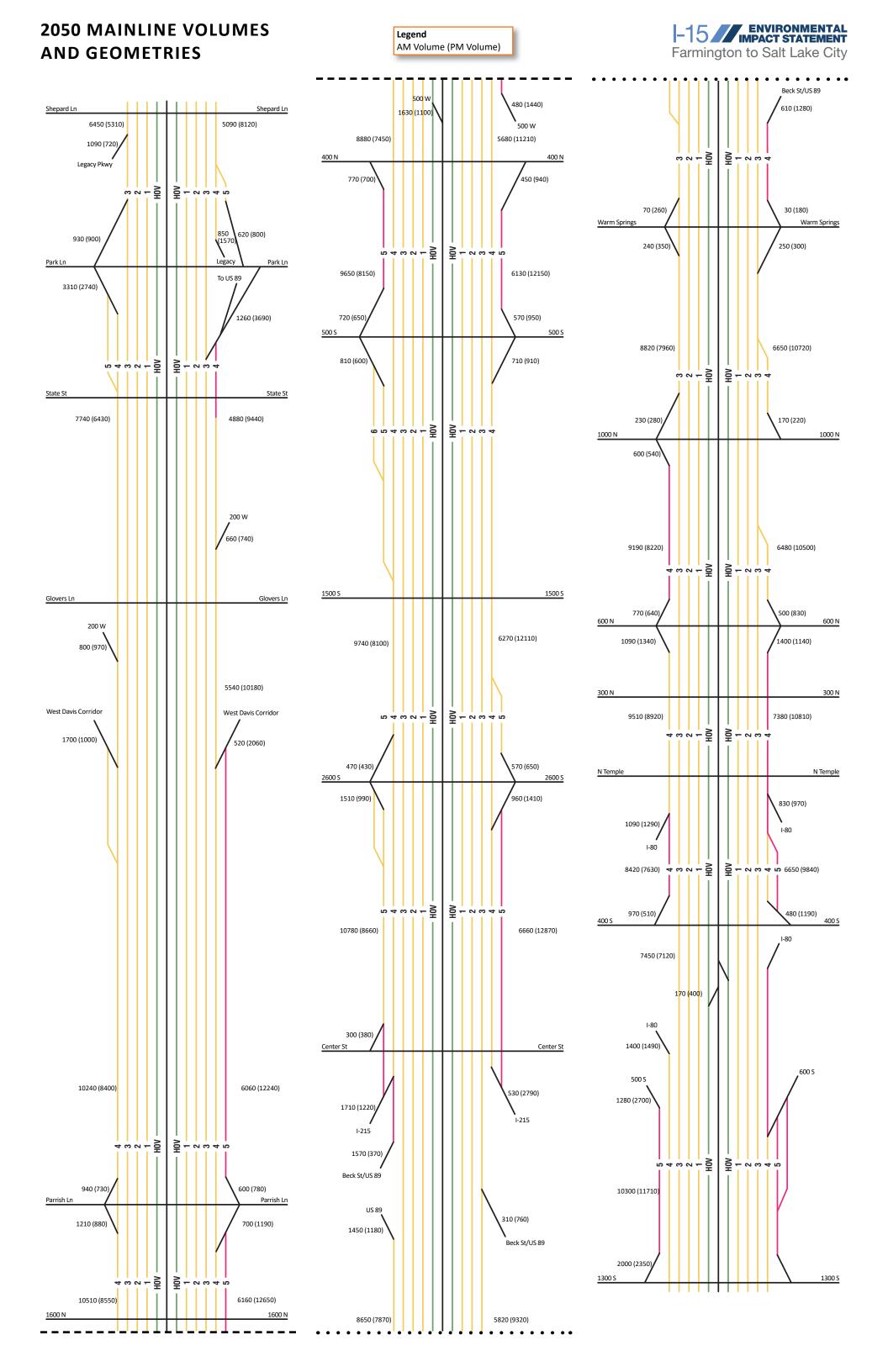











Appendix B Existing (2019) Mainline Geometries and AM and PM Peak Hour Volumes

Appendix C 2050 No-Action Mainline Geometries and AM and PM Peak Hour Volumes

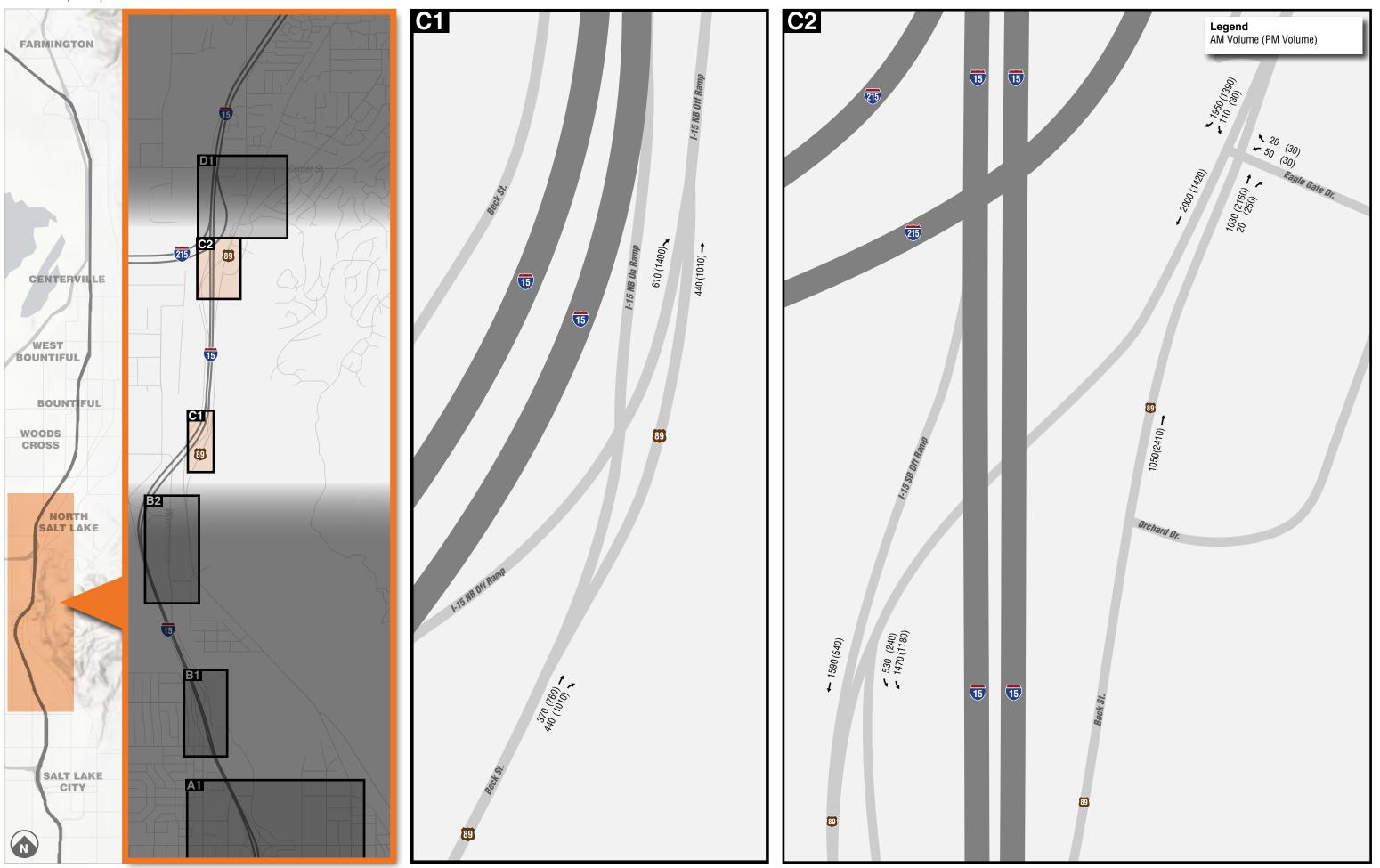
Appendix D Socioeconomic Data Adjustments

	ustments Based on	
TAZ Number	Households	Empoyment
556	37	108
557	-196	150
558	-198	46
559	-49	-86
560	-7	765
561	-31	60
562	1	71
563	-155	60
564	0	0
565	142	1705
566	-55	223
567	54	33
568	91	1149
569	-3	19
570	7	-2189
571	27	823
572	-31	73
573	59	132
574	-24	91
575	-5	-4
576	13	91
578	-57	74
641	1089	0
642	-57	0
647	75	0
652	-358	0
653	210	0
2882	-159	-52
2885	0	-15
2886	14	-14
2887	0	0
2888	0	0
2889	0	99
2890	-1	-5
2891	-147	431
2892	384	-156
2893	-4	64
2894	21	263
2895	-25	94
2896	-18	73
2904	106	0

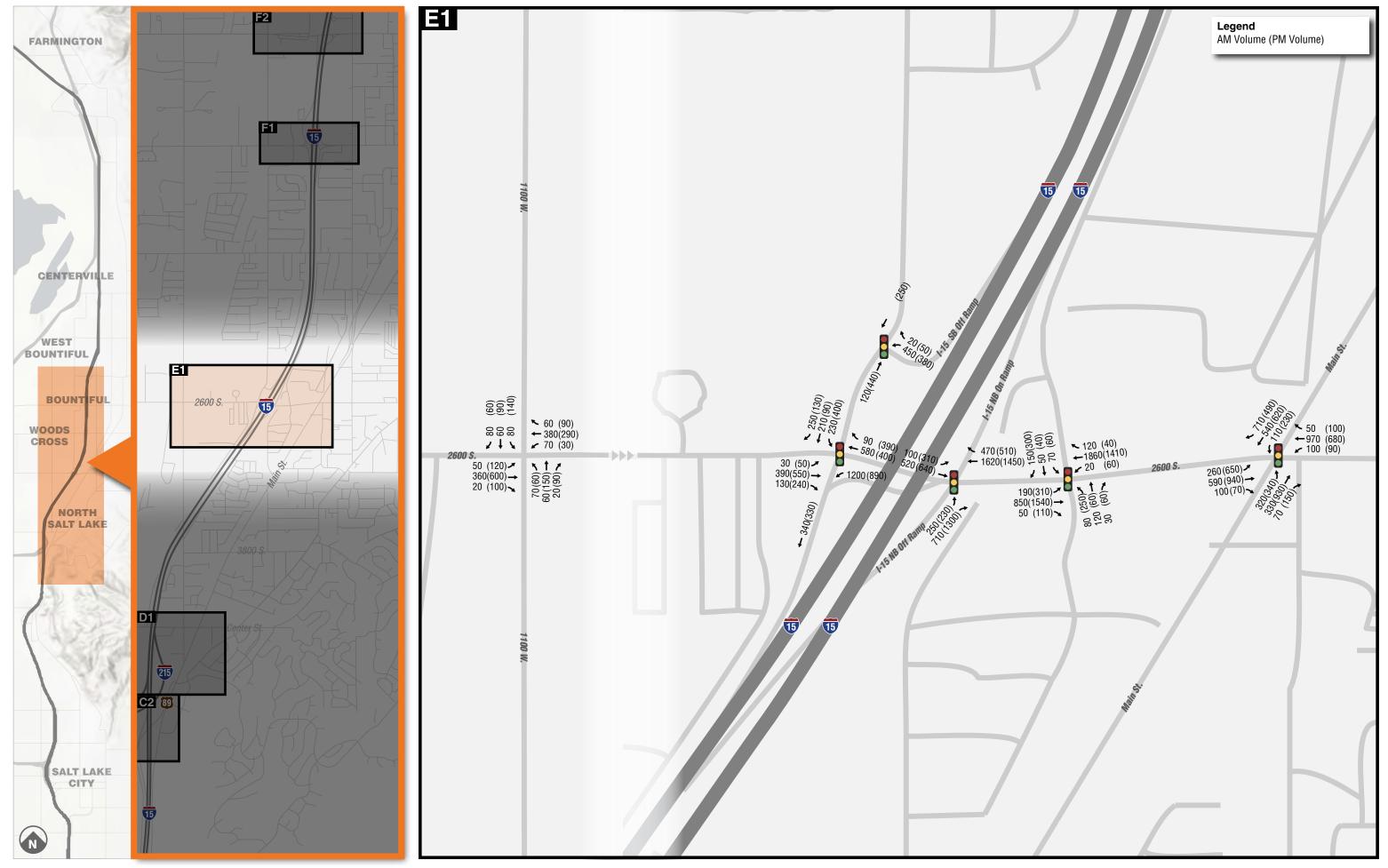
Socioeconomic Adjustments Based on City Comments(see Section 4.2.4)

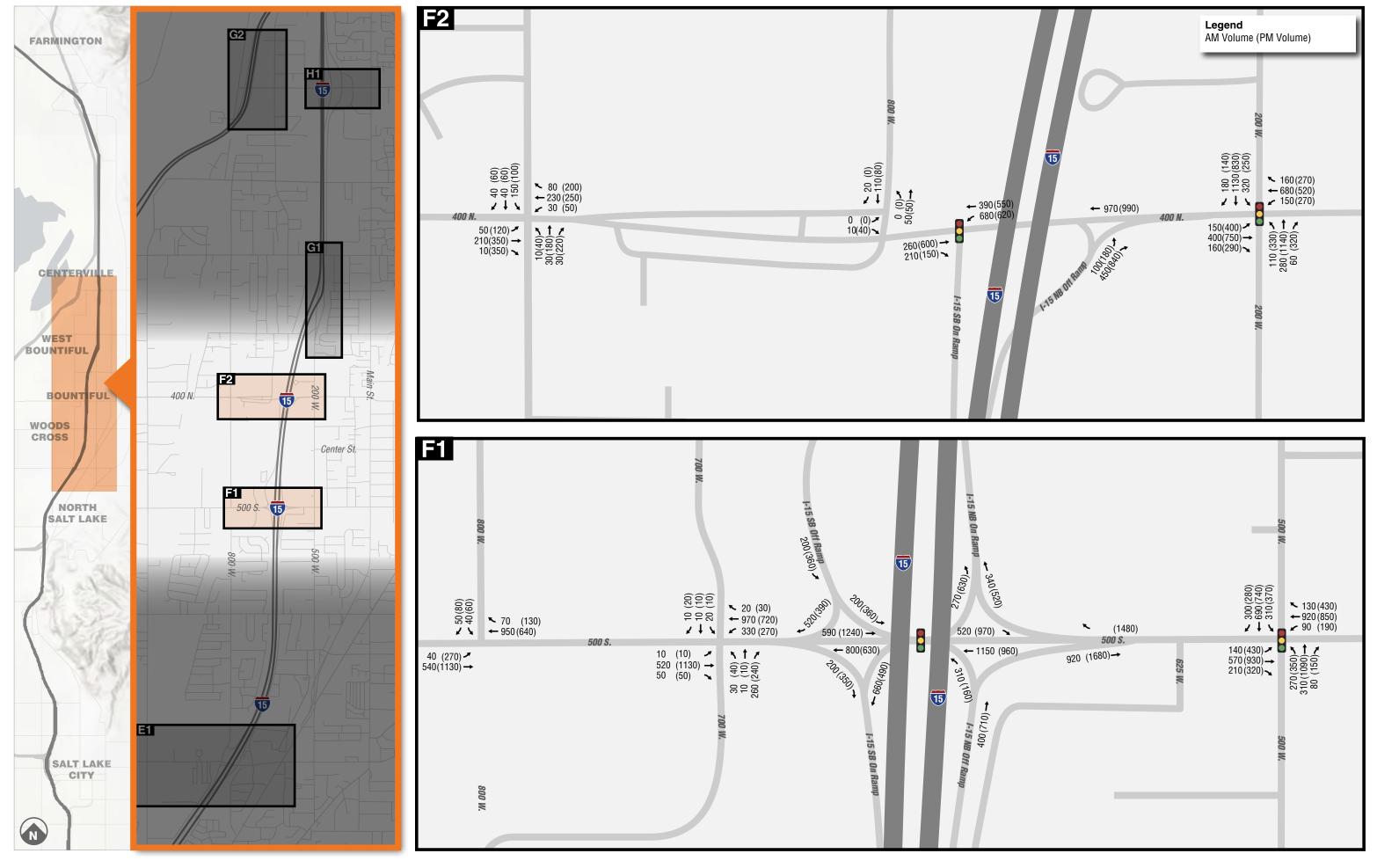

Socioeconomic Adjustments to Maintain Limit on Total Data

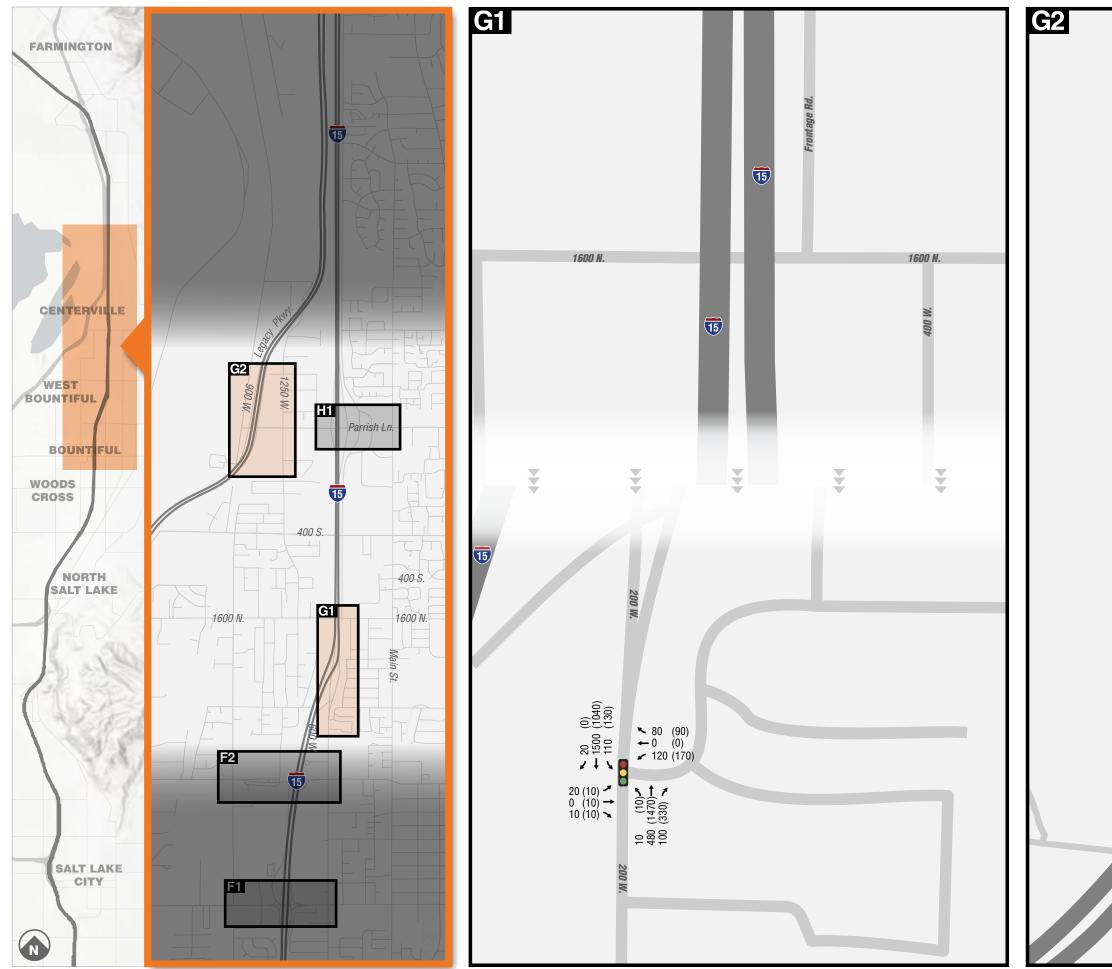
TAZ Number	Households	Empoyment
468	0	-334
526	0	-3291
535	-751	0

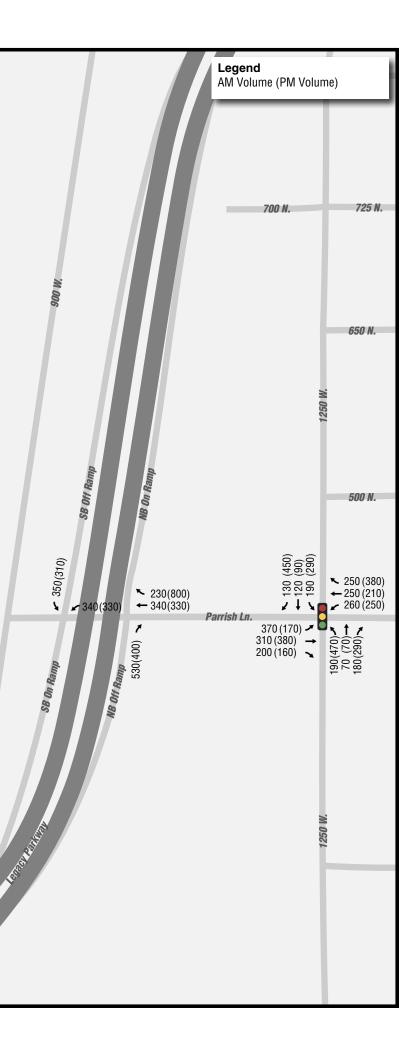


Appendix E 2050 No-Action AM and PM Peak Hour Volumes

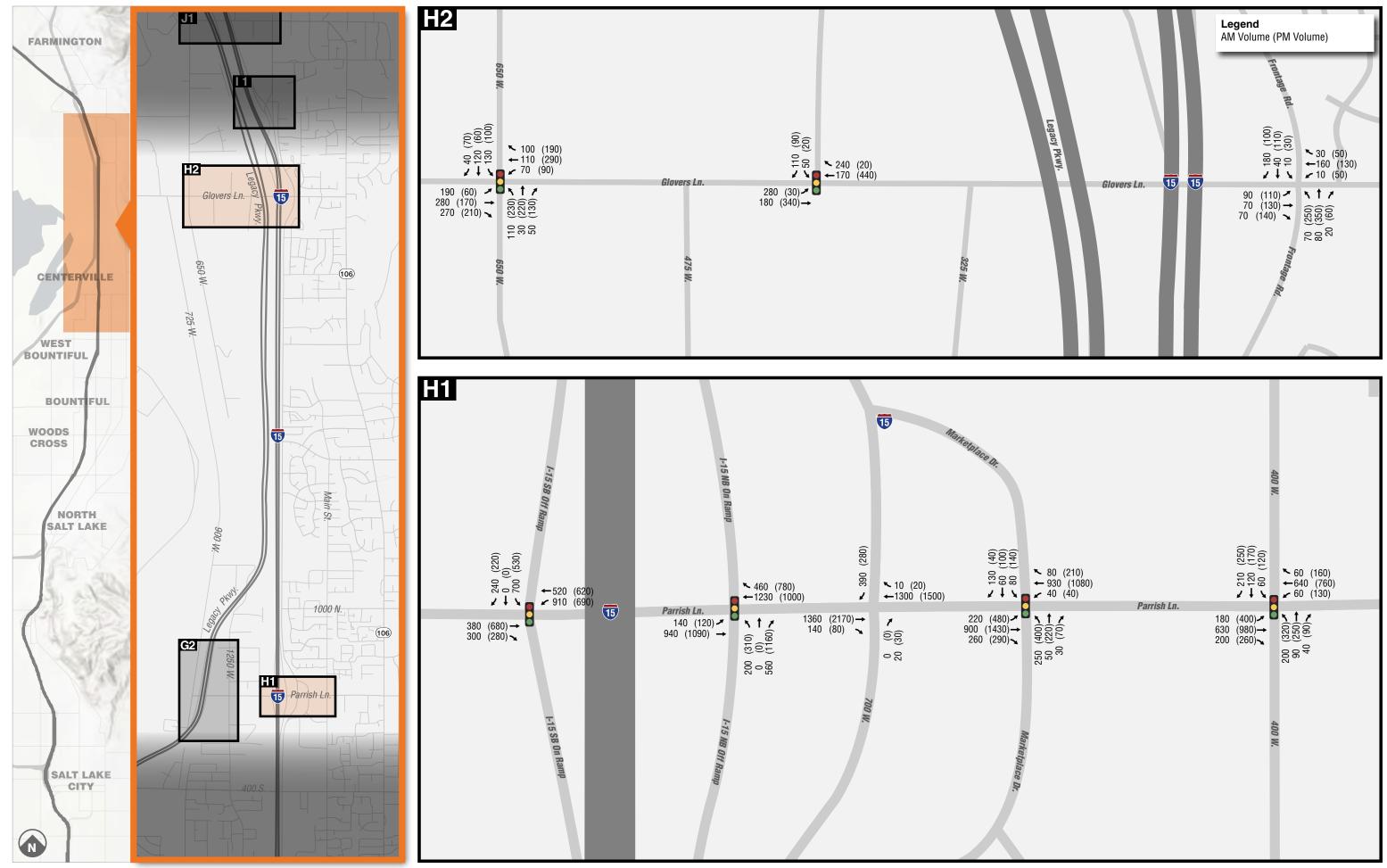


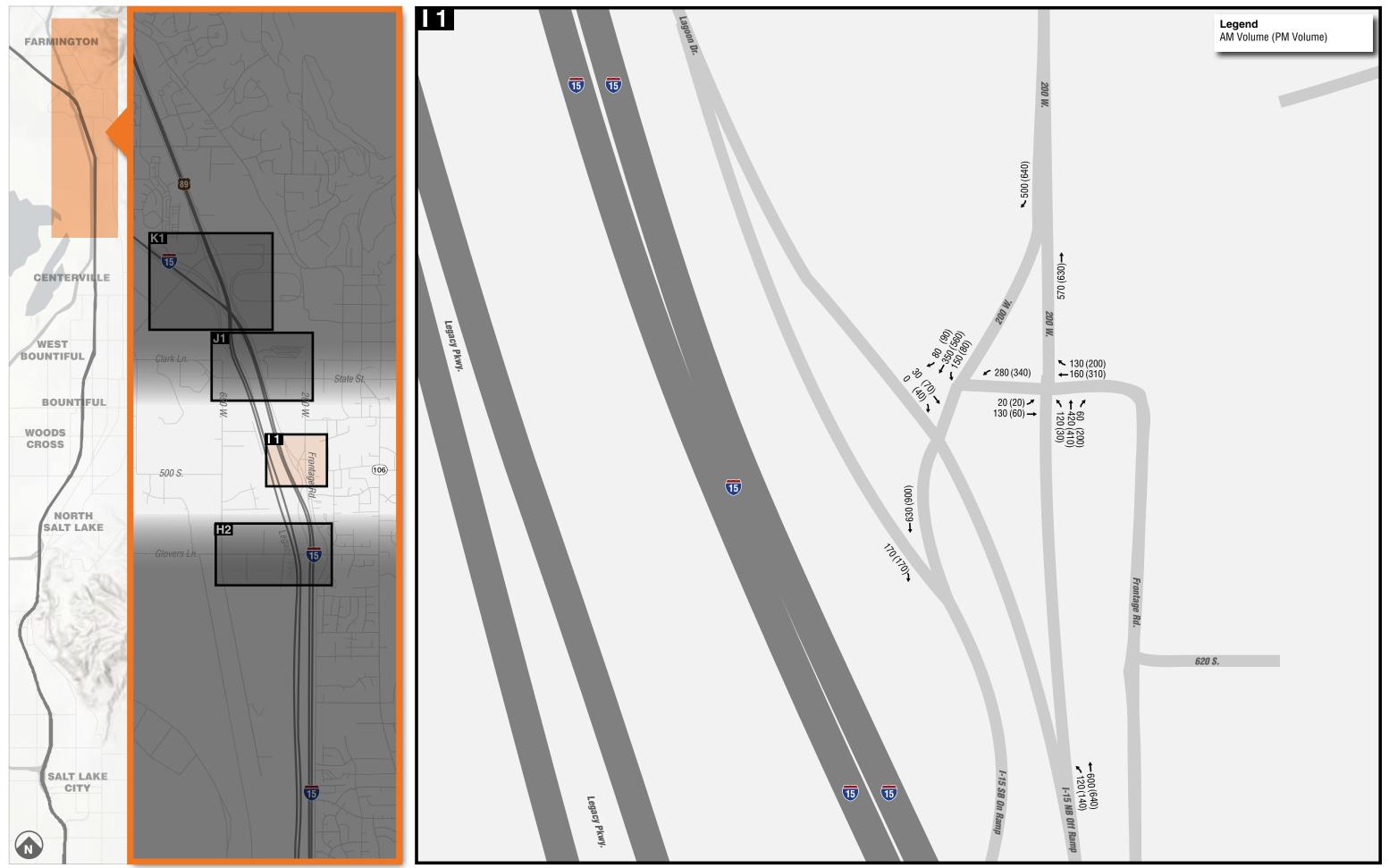

No-Action (2050) AM/PM Peak Hour Volumes

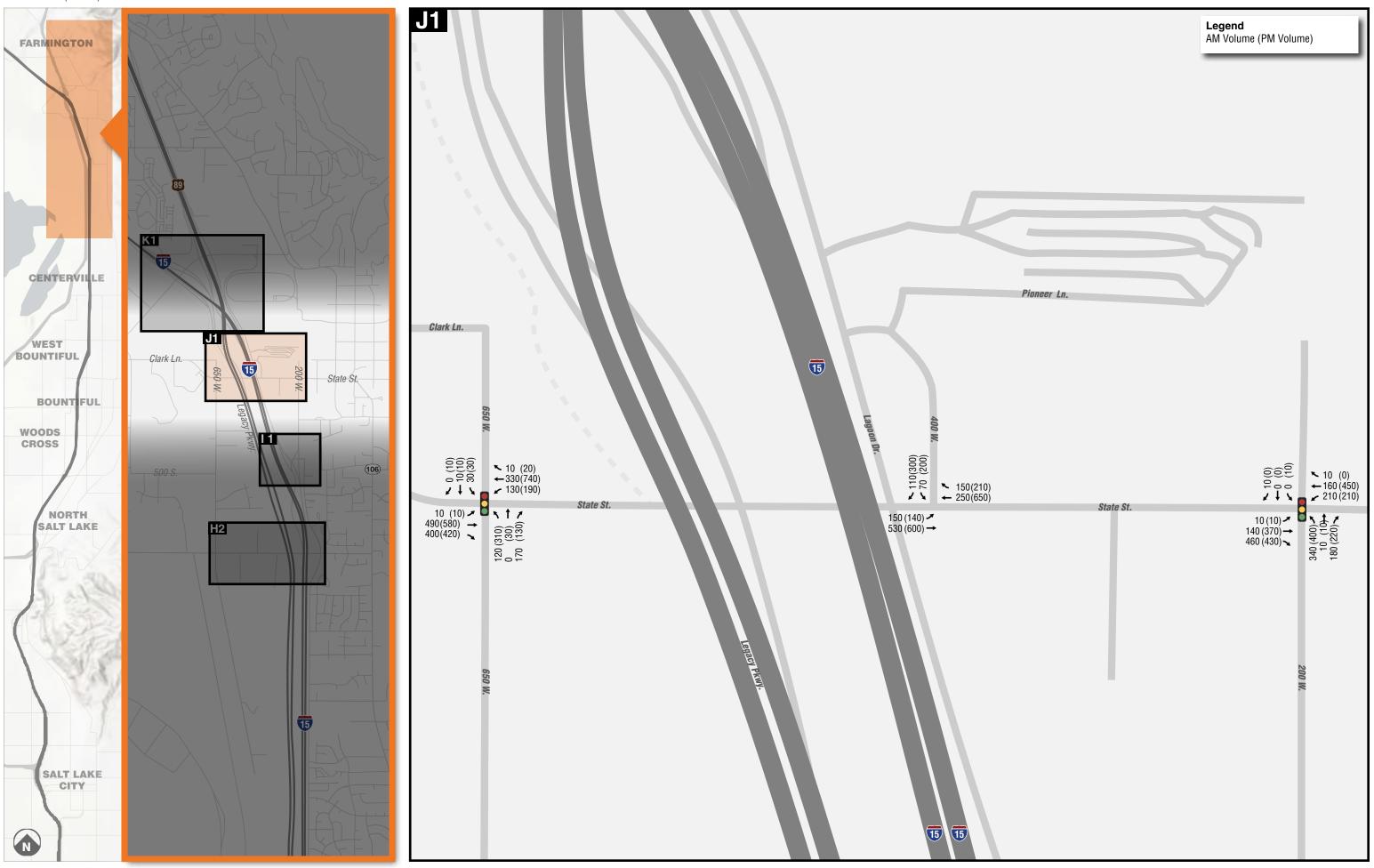


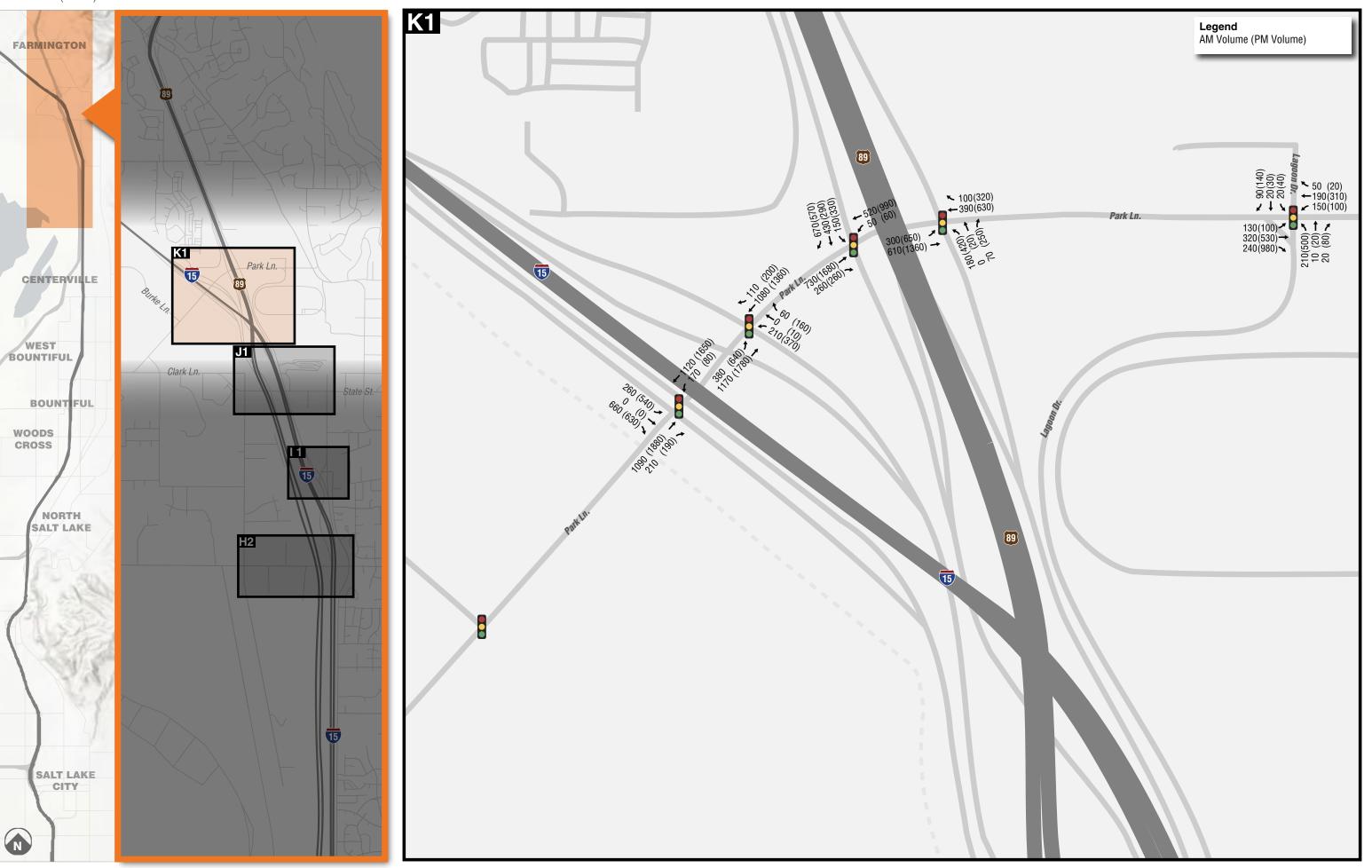


No-Action (2050) AM/PM Peak Hour Volumes









No-Action (2050) AM/PM Peak Hour Volumes

Appendix F Corridor Travel Time and Speed Results

					Av	verage Speed	(mph)					
Street	City	Begin Segment	End Segment	Year	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00
600 N EB	Salt Lake	1200 W	US-89	2019	24.8	18.9	19.4	17.6	20.9	19.3	18.9	20.1
000 N LB	Jan Lake	1200 W	03-85	2050	20.6	10.7	10.6	12.9	19.3	17.2	15.3	13.3
600 N WB	Salt Lake	Wall St	800 W	2019	22.5	20.4	18.8	20.3	18.5	17.4	17.4	18.8
000 N WB	Salt Lake	wan st	800 W	2050	20.6	20.4	16.5	18.4	17.7	17.9	17.9	18.9
2600 S EB	N. Salt Lake	1250 W	US-89	2019	24	18.7	20.6	19.8	22.0	22.3	21.6	20.6
2000 3 EB	N. Salt Lake	1250 W	03-69	2050	16.5	15.2	15.0	16.3	16.5	10.4	9.3	9.8
2600 S WB	N. Salt Lake	500 W	1100 W	2019	22.7	17.3	18	21.7	17.2	16.3	15.9	19.8
2000 3 008	N. Salt Lake	500 W	1100 W	2050	15.7	14.6	14.5	15.6	16.2	9.1	7.4	7.7
500 S EB	W. Bountiful	Howard St	500 W	2019	25.9	24.2	21.4	19	20	18.8	22.1	20.7
500 3 EB	W. BOUIIIIII	nowaru St	500 W	2050	20.0	20.4	20.2	20.0	18.4	17.6	16.8	18.6
500 S WB	W. Bountiful	285 W	8th W	2019	28.8	27.4	26.6	23.8	20.6	19.8	16.3	18.5
200 2 WB	W. BOUIIIIII	205 VV	OLII VV	2050	23.3	14.1	7.7	10.6	16.3	8.5	7.9	8.1
400 N EB	W. Bountiful	900 W	500 W	2019	28.1	24.8	24.3	24.9	23.9	22.3	21.8	25.3
400 N EB	W. BOUIIIIII	900 W	500 W	2050	21.8	19.3	19.6	20.8	18.1	12.6	13.2	14.3
400 N WB	W. Bountiful	200.14/	800 W	2019	26.7	26.1	21.5	22.5	22.6	23.7	21.7	22.8
400 N WB	w. Bountiful	200 W	800 W	2050	24.5	21.7	17.2	21.3	16.0	7.4	5.5	5.9
Dewrich Lp. CD.	Contonvillo	Legacy	400 W	2019	23.9	20.8	19.5	21.1	20.6	20.3	21.4	18.8
Parrish Ln EB	Centerville	Pkwy	400 W	2050	18.8	10.4	5.1	5.0	4.8	5.3	4.7	4.5
Parrish Ln	Contonville	Main St	Legacy	2019	25.2	23.1	17.8	17.5	16.9	15.9	17.5	16.5
WB	Centerville	Main St	Pkwy	2050	24.7	19.2	16.8	16.8	13.4	6.7	6.0	5.5
I-15 NB	SLC to	600 S	Shepard	2019	73.1	71.2	71.6	71.2	64.3	51.5	44.9	63.9
I-TO IND	Farmington	000 3	Ln	2050	72.6	70.7	68.9	69.9	28.0	16.4	13.6	12.6
I-15 SB	Farmington	Shepard	1300 S	2019	71.0	58.8	59.1	67.6	69.2	68.8	70.1	68.8
1-12 20	to SLC	Ln	1200.2	2050	54.8	27.1	16.3	12.7	50.6	31.5	22.6	18.7

Light to Moderate Congestion Moderate to Heavy Congestion Heavy Congestion Very Heavy Congestion

					Tr	avel Time (mi	nutes)					
Street	City	Begin Segment	End Segment	Year	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00
600 N EB	Salt Lake	1200 W	US-89	2019	3.8	5.0	4.9	5.4	4.6	4.9	5.0	4.7
000 N LB	Salt Lake	1200 W	03-85	2050	4.6	8.9	9.0	7.4	5.0	5.6	6.2	7.2
600 N WB	Salt Lake	Wall St	800 W	2019	3.5	3.8	4.1	3.8	4.0	4.1	4.2	4.0
	Salt Lake	wall St	800 W	2050	3.8	3.8	4.7	4.2	4.4	4.4	4.4	4.1
2600 S EB	N. Salt Lake	1250 W	US-89	2019	2.8	3.7	3.3	3.4	4.1	4.8	5.0	4.1
2000 3 EB	N. Salt Lake	1250 W	03-69	2050	4.1	4.5	4.5	4.2	4.1	6.5	7.4	7.0
2600 S WB	N. Salt Lake	500 W	1100 W	2019	3.2	4.2	4.0	3.3	3.7	3.5	3.6	3.3
2000 3 WB	N. Salt Lake	500 W	1100 W	2050	4.6	4.9	5.0	4.6	4.4	7.9	9.7	9.3
500 S EB	W. Bountiful	Howard St	500 W	2019	2.4	2.5	2.9	3.2	3.1	3.3	2.8	3.0
500 3 EB	W. BOUIIIIII	nowaru St	500 W	2050	3.1	3.0	3.0	3.1	3.3	3.5	3.7	3.3
500 S WB	W. Bountiful	285 W	8th W	2019	1.8	1.9	1.9	2.2	2.5	2.6	3.2	2.8
200 2 WB	W. Bountiful	283 VV	oun vv	2050	2.2	3.7	6.8	4.9	3.2	6.1	6.6	6.4
400 N EB	W. Bountiful	900 W	500 W	2019	1.6	1.8	1.9	1.8	1.9	2.1	2.1	1.8
400 N EB	W. BOUIIIIII	900 W	500 W	2050	2.1	2.4	2.3	2.2	2.5	3.6	3.5	3.2
400 N WB	W. Bountiful	200 W	800 W	2019	1.9	2.0	2.4	2.3	2.3	2.2	2.4	2.3
400 N WB	w. Bountiful	200 W	800 W	2050	2.1	2.4	3.0	2.4	3.2	7.0	9.3	8.7
Parrish Ln EB	Centerville	Legacy	400 W	2019	2.0	2.3	2.4	2.2	2.3	2.3	2.2	2.5
Parristi LII EB	Centervine	Pkwy	400 W	2050	2.5	4.5	9.1	9.4	9.7	8.8	9.9	10.5
Parrish Ln	Centerville	Main St	Legacy	2019	2.6	2.9	3.7	3.8	3.9	4.2	3.8	4.0
WB	Centervine	wain St	Pkwy	2050	2.7	3.5	4.0	4.0	5.0	10.0	11.1	12.0
I-15 NB	SLC to	600 S	Shepard	2019	14.5	14.9	14.8	14.9	16.5	20.6	23.6	16.6
1-12 INR	Farmington	000.2	Ln	2050	14.6	15.0	15.4	15.2	37.8	64.5	78.1	84.2
	Farmington	Shepard	1200 C	2019	15.9	19.2	19.1	16.7	16.3	16.4	16.1	16.4
I-15 SB	to SLC	Ln	1300 S	2050	20.6	41.6	69.1	88.9	22.3	35.9	50.0	60.3

Appendix G VISSIM Intersection Analysis Results, Existing (2019)

		Wors	t Case LOS				Delay (S	ec)			I			95tl	n Percentile	Queue (Fe	et)			1			Volume	Served			I			Volum	e Demand			I				Percent S	Served			I	GEH	
Int # Intersection Name	Control A		PM						16:00		18:00					15:00	16:00	17:00			7:00	8:00			16:00			6:00 7				16:00					8:00	9:00	15:00	16:00	17:00 1		AM PM	
108 W State St @ 400 W	U	SB A IN A	A A				6.6 6.6		9.2 9.2	8.7 8.7	7.7 7.7	42	60	43	41	58	78	63	62	124	170	166	156	177	208	209	195	126 1	70 168	3 157	178	210	210	196	98	100	99	99	99	99	100	99 (0.2 0.2	
109 Frontage Rd @ 200 W SB	U	WB B	B						11.7 11.7		10.7 10.7	36	57	54	39	35	38	40	34	100	141	135	129	84	101	96	92	111 1	50 148	3 139	85	100	100	93	91	94	91	93	99	101	96	99 1	1.8 0.2	_
110 (EB) Frontage Rd @ 200 W NB	U	EB A WB B	A			7.1 10.2	6.8 9.1		6.5 9.5	6.3 9.6	6.3 8.9	43 80	59 104	60 105	43 81	38 75	40 88	37 90	37 74	102 197	139 267	139 269	129 250	67 201					40 139 70 263		68 203	80 240		75 224	99 99	100 99	100 101	99 100	99 99				0.1 0.1 0.1 0.1	
		IN B	A	9.0	10.2	10.2	9.1	8.9	9.5	9.6	8.9																																	_
111 W Glovers Ln @ Farmington Hig	g U	SB A IN A	A A	8.1			8.4 8.4		8.4 8.4	8.0	7.7 7.7	51	56	54	52	51	55	52	49	116	158	157	147	92	108	108	101	118 1	50 158	3 148	93	110	110	103	98	99	99	99	99	98	98	98 (0.3 0.3	_
112 W Glovers Ln @ Frontage Rd	U	EB B WB C	C F				10.3 14.1		16.1 73.3		13.6 32.7	66 63	86 124	81 87	68 67	101 102	133 214	152 188	120 108	133 107	179 150	181 146	167 137	210 98	260 119	259 121			80 178 50 149		238 102			262 112	101 96	99 100	101 98	100 99	88 96	93 99			0.1 2.6 0.4 0.2	
		NB B SB B	DB						29.5 14.2		18.6 11.7	45 63	61 83	67 86	55 71	143 78	209 102	201 110	137 82	107 161	138 219	137 216	129 203	261 194	307 228				40 139 20 218		263 195			289 215	104 99	98 100	99 99	99 100	99 100	99 99			0.0 0.2 0.1	
		IN C	F	14.3	21.9	18.7	14.1	29.5	73.3	69.7	32.7				74	42	-							-							407						100	100	07	00				_
113 Parrish Ln @ SR-67 SB Ramps	U	SB B IN B	A A	10.6	13.0	13.2		9.0	9.6 9.6		9.1 9.1	64	97	93	74	43	60	61	56	167	229	227	214	124				170 2	30 22	7 213	127			140	99	99	100	100	97	98	99			
114 Parrish Ln @ SR-67 NB Ramps	U	NB A IN A	BB				6.4 6.4		13.3 13.3		9.3 9.3	47	55	53	50	116	152	140	97	124	169	166	156	297	347	347	325	125 1	70 168	3 158	297	350	349	327	99	100	99	99	100	99	99	99 (0.2 0.2	
115 Parrish Ln @ (NB) 700 W	U	NB A SB F	B				6.5 18.9		11.4 33.3	10.8 35.0	8.9 17.8	16 177	16 371	18 372	17 190	24 151	34 230	35 276	19 153	14 284	20 377	20 396	20 361	24 232	28 280	28 278		15 2 287 3		18 5 361	26 238	30 280		28 261	93 99	101 97	102 103	109 100	94 98	93 100			0.1 0.7 0.2 0.2	
201 400 N @ 800 W		IN F EB B	E	16.1				16.9	33.3 29.7		17.8 16.6	68	83	87	62	117	189	203	112	149	195	197	157	219	261	260		148 2	00 198	3 158	221	260		209	101	09	00	00	00	100			0.2 0.1	
201 400 N @ 800 W	0	WB B	c	9.5	10.8	10.7		13.9	18.2	18.3	12.9	76	85	86	78	144	289	274	162	141	182	188	174	338	385	389	361	140 1	90 188	3 176	331	390	389	364	100	98 96	100	99	102	99	100	99 (0.3 0.0	
		NB A SB B	B						13.7 13.5		10.6 10.7	39 58	41 64	41 63	37 57	79 42	99 61	96 59	81 45	52 138	69 189	68 187	63 175	161 134	188 159				0 70 90 188		161 136			177 149	100 99	99 100	97 99	96 100	100 99	99 100			0.4 0.2 0.2 0.0	
202 400 N @ 660 W Access	U	IN B SB A	D		-	12.7 8.0	10.7 7.6		29.7 8.0	29.0 8.4	16.6 8.3	20	20	20	20	20	21	20	20	14	20	20	20	20	20	20	18	15 2	0 20	18	17	20	20	19	93	101	101	109	119	100	100	96 (0.1 0.3	_
	-	NB A	A	6.1	6.3	6.3	6.0	6.0	6.4	6.6	5.9	47	49	49	48	48	55	53	46	80	108	107	101	97	120				20 119		102			112	90	90	90	91	95	100			2.1 0.2	
205 400 N @ I-15 SB On Ramp	U	WB D	D	12.4	27.4	24.6	13.4	14.5	8.0 24.0	25.1	8.3 12.8	340	691	582	360	335	423	433	276	636	860	854	804	743	870	891	823	641 8	70 860	0 805	746	880	878	822	99	99	99	100	100	99	101	100 0	0.4 0.0	-
206 400 N @ I-15 NB Off Ramp	U	IN D NB C	D	15.7	17.3	17.6	14.3	21.3	24.0 29.4	30.5	12.8 21.1	82	82	82	82	134	195	177	124	313	429	426	398	744	878	875	821	317 4	30 425	5 398	746	880	878	821	99	100	100	100	100	100	100	100 0	0.1 0.1	-
207 500 S @ 800 W	U	IN D SB A	D A				14.3 6.3		29.4 6.3		21.1 6.2	42	53	55	39	40	37	48	37	55	79	81	74	50	60	60	55	59 8	0 80	74	51	60	60	56	94	99	102	99	99	101	101	98 (0.2 0.0	_
208 500 S @ (NB) 700 W		IN A NB A	A	6.2	6.2		6.3 6.1	6.3	6.3 6.9	6.8	6.2 6.2	56	66	64	58	58	63	62	56	183	251	249	231	200	240	239			50 248		204			224	99	101	101	100	02	100			0.0 0.1	
208 500 5 @ (146) 700 W	0	SB A	A	9.3	9.4	9.2	9.3	9.7	9.6	9.7	9.5	24	25	24	24	29	24	24	27	22	28	245	26	200	240	235			i0 30	28	26	30		28	99	94	93	92	93	94			0.6 0.7	
209 2600 S @ 1100 W	U	EB C	E				9.3 13.8		9.6 34.5	9.7 40.4	9.5 18.5	107	154	140	116	160	282	298	167	311	427	428	399	549	643	646		317 4	30 426	5 398	551	650	648	606	98	99	101	100	100	99	100		0.2 0.2	
		WB C NB B	c c						24.3 15.9		16.4 13.5	193 78	893 79	1496 78	385 78	127 96	139 104	164 100	116 80	284 63	375 90	383 88	357 83	312 107	380 128			288 3 67 9	90 386 10 89		322 110			355 121	99 95	96 101	99 99	99 100	97 97	100 98			0.7 0.5 0.2 0.4	
		SB C	В	11.6				12.5	14.1 34.5	14.2	12.7 18.5	77	113	114	96	63	76	76	75	115	158	157	147	76	88	88			60 158	3 148	76	90		84	97	99	99	99	100	98	98		0.3 0.3	
210 2600 S @ Overland Rd	U	NB A	A	7.2	8.6	8.8	7.8	7.7	8.6	8.7	8.1	78	78	79	77	23	23	37	34	22	28	29	27	25	30	28	28	22 3	0 30	28	26	30	30	28	99	94	97	97	99	99	93	98 (0.4 0.3	-
211 2600 S @ 400 E	U	IN A NB A	B	8.1	8.3	7.8		10.3	8.6 10.4	11.4	8.1 9.9	23	24	24	24	47	55	60	46	8	8	8	8	59	68	68	63	7 :	.0 10	9	60	70	70	66	111	80	80	85	99	97	97	97 (0.8 0.4	-
301 Center St @ I-15 SB Off Ramp S	ie u	IN A SB B	B						10.4 13.7		9.9 10.8	91	100	518	197	80	125	101	82	226	308	310	288	220	259	259	242	229 3	10 30	7 287	220	260	259	243	99	99	101	100	100	100	100	100 0	0.0 0.1	-
302 Center St @ Main St	U	EB B	B C				11.1 9.4		13.7 17.8	13.1 17.0	10.8 10.4	124	192	390	184	195	368	367	165	333	455	458	426	493	591	584	549	339 4	60 455	5 426	501	590	589	551	98	99	101	100	98	100	99	100 0	0.2 0.3	—
		WB B NB B	В			12.7	11.1	10.2	13.1 21.3	12.8	10.2 15.9	103 59	133 64	214 73	137 46	93 112	117 185	105 208	87 144	155 107	218 137	211 138	203 129	144 244		173 290			20 218 40 139		144 246		170	159 271	95 103	99 98	97 100	99 99	100 99	101 99		100 0	0.6 0.2 0.0 0.1	
		SB A	в	7.5	9.9	9.7	8.2	10.4	13.4	12.9	11.1	45	63	86	67	49	68	67	62	82	110	105	100	87	99	100			10 10		85			93	101	100	97	98	102				0.2 0.0	
303 US-89 @ Main St	U	EB A	A	1010	2017	4.5	3.8	6.0	21.3 7.5	7.1	15.9 5.0	77	93	109	92	120	146	138	98	149	196	196	183	259	308	309	288	148 2	00 198	3 185	263	310	309	289	101	98	99	99	98	99	100	100 0	0.2 0.2	-
304 US-89 @ Eaglegate Dr	U	IN A WB A	<u>А</u> А				3.8 7.7		7.5 8.3	7.1 8.4	5.0 7.8	63	65	64	60	64	64	64	58	52	69	68	63	51	60	60	55	52 5	0 69	65	51	60	60	56	100	99	99	97	101	100	100	98 (0.2 0.0	-
309 Warm Springs @ I-15 NB Ramps	s U	IN A EB B	A B		-				8.3 10.6		7.8 9.7	119	153	451	210	101	118	119	96	192	258	260	241	165	201	198	186	192 2	60 25	7 241	170	200	200	187	100	99	101	100	97	100	99	100 (0.1 0.2	_
		IN B	B	10.6	12.9			10.2	10.6 7.8		9.7		45		40	27		42		36	53	47	40	20				37 5	0 20		24		40	37	98	106		100		113				
310 (NB) Warm Springs @ 1800 N	0	SB A	A	8.4	8.8	8.8	8.7	7.6	7.9	7.8	7.5 7.7	39 112	112	140	133	111	41 111	107	41 111	106	149	147	139	51	45 65	38 61	-		50 148	3 139	51	40 60	60	56	96	99	99	100	99	109			0.0 0.2 0.3 0.5	
311 N Chicago St @ 1800 N	U	IN A EB A	А А	6.6	7.1		8.7 7.0		7.9 6.0	6.0	7.7 6.0	78	78	81	79	22	37	37	37	84	125	119	113	21	33	28	29	89 1	20 118	3 111	26	30	30	28	95	105	101	102	82	111	92	105 0	0.2 0.2	-
312 900 N @ Warm Springs Connect	t U	IN A WB A	<u>А</u> А				7.0 7.0		6.0 8.3	6.0 7.9	6.0 7.5	45	58	99	80	71	131	94	83	35	44	50	45	100	107	111	101	37 5	0 50	47	93	110	110	103	96	87	100	96	107	98	101	98 (0.7 0.2	-
313 Warm Springs @ Warm Springs	s+ U	IN A EB A	<u>А</u> А						8.3 6.3		7.5 6.0	30	30	48	33	0	0	0	0	67	84	84	81	27	31	30	29	67 9	0 89	83	26	30	30	28	100	93	95	97	105	102	100	105 (0.8 0.3	_
314 900 N @ I-15	U	IN A EB A	A	6.7	6.9	7.2	6.7 8.1	6.2	6.3 11.5	6.4	6.0 10.5	75	76	110	112	101	145	136	115	88	119	116	109	200	241				20 119		204			224	100	00	09	08	98	101			0.3 0.1	
		IN A	B	8.2	8.3	8.1	8.1	9.7	11.5	11.4	10.5																						-				50	50	50					_
315 600 N @ (NB) 8th W	U	NB A SB A	A	5.6	6.0			5.7			6.1 5.4	85 33	103 38	132 35	96 34	71 31	72 31	74 30	71 30	124 34	169 48	166 48	155 45	92 8	108 8	108 8			70 168 60 50		93 9	110 10		103 9	100 92	99 96	99 96	99 97	99 91	98 80			0.2 0.3 0.6 1.0	
1003 600 N @ 900 W	s	IN A EB B	A B		-				6.0 17.4	6.3 17.7	6.1 14.2	144	191	226	168	110	133	150	118	523	716	712	568	461	549	546	443	531 7	20 712	2 568	466	550	549	442	98	99	100	100	99	100	100	100 0	0.2 0.2	_
		WB B NB B	B	9.2	11.0	11.1	9.7	13.4	17.0 18.9	17.3	13.7 16.5	99 69	131 91	151 111	129 85	206 152	325 177	310 182	238 131	431 213	600 286	599 290	558 269	892 406	1045 478	1062 477		443 6 213 2	00 593 90 283		899 407		1057 479	989 448	97 100	100 99	101 101	101 100	99 100	99 100	100	100 0	0.0 0.3 0.0 0.2	
		SB B	c	16.8	18.8	18.8	15.8	17.5	20.1	20.9	17.5	73	105	128	95	89	112	111	88	195	267	268	250	221					70 26		220			243	98	99	101	100	100	99			0.2 0.1	
5201 Park Ln @ US-89 SB Ramps	S	IN B EB B	B	10.4	14.6	14.6	11.1	7.8	17.8 9.9	10.1	14.8 6.8	105	154	137	113	239	288	288	220	553	755	754	704	1209					60 75:		1204			1325	99	99	100	100	100	98			0.1 0.1	
		WB B SB C	B C				13.7 25.4		18.9 27.6		16.1 24.9	84 447	108 685	103 743	85 503	81 270	87 325	87 306	80 239	287 801	386 1104	387 1083	360 1018	558 789	651 947				90 386 .00 108		560 797			616 878	100 99	99 100	100 100	100 100	100 99	99 101			0.1 0.2 0.2 0.1	
5202 Park Ln @ US-89 NB Ramps	S	IN C EB A	B	18.9	22.8	22.8		15.8		17.8	15.1 7.3	104	116	122	103	187	214	214	189	475	641	634	595	1182					50 643		1170	1390	1387	1297	99	99	qa	90	100	98			0.6 0.3	
2202 1 BIK EI @ 03-03 NB Kallips	5	WB B	В	14.9	14.6	15.0	15.0	15.0	16.2	16.7	14.8	92	106	109	88	131	144	151	135	278	375	382	352	480	569	569	531	280 3	80 376	5 352	483	570	569	532	99	99 99	102 97	100	99	100	100	100 0	0.0 0.1	
		NB D IN B	D B	14.2	13.4	13.9	14.3	13.6	14.5	14.2	45.9 13.6	92	116	114	99	162	184	187	142	95	131	125	120	307					30 129		314			345	99	100	91	99	98	101			0.3 0.2	
5203 Park Ln @ I-15 SB Ramps	S	EB C WB B	C A				16.6 13.4		19.8 5.3		22.7 5.2	84 184	112 255	114 230	104 186	153 139	175 153	314 163	308 148	624 618	841 835	841 854	786 789	1181 1019					50 843 50 840		1187 1026			1307 1129	100 99	99 98	100 102	100 100	100 99	99 100			0.2 0.2 0.1 0.2	
		SB D	E C						49.0 23.7	56.6	40.0 22.1	278	314	290	252	716	1539	2271	557	539	758	734	693	893	1080	1065	1000	553 7	50 742	2 694	907	1070	1067	999	97	101	99	100	98	101	100		0.3 0.1	
5211 W State St @ 200 W	S	EB A WB C	ВВ	7.3	9.1	8.9	7.5	9.4	10.3 18.7	10.6	9.8 15.0	121 113	175 185	171 199	110 121	171 116	223 142	230 142	143 115	329 239	458 327	445 326	416 304	488 327	573 388	563 387			60 455 30 326		475 331	560 390		523 364	97 98	100	98 100	98	103	102			0.8 0.9 0.2 0.2	
		NB B	в	11.1	14.1	14.8	10.9	13.4	16.6	16.4	12.7	114	178	187	116	216	277	277	200	326	450	445	416	537	641	638	597	332 4	50 445	5 417	331 543	640	639	597	98	99 100	100	100	99 99	100	100	100 0	0.1 0.1	
		SB B	A	11.7	11.5	13.0	12.9	5.7	6.4	6.4	5.6	24	27	24	24	0	0	0	0	22	28	28	26	8	8	8	8	22 3	0 30	28	9	10	10	9	102	93	93	92	92	79	81	86 0	0.6 1.0	

Int # Intersection Name	Control	Approach	Worst Case LC AM PI		00 7:0		8:00		15:00	16:00		18:00	6:00	7:00	95 8:00	th Percent 9:00	ile Queue (F 15:00		17:00	18:00	6:00	7:00	8:00	Volum 9:00	e Served 15:00	16:00	17:00	18:00	6:00	7:00	8:00	Volume I 9:00	Demand 15:00	16:00	17:00	18:00	6:00	7:00	8:00	Percent 9:00	t Served 15:00	16:00	17:00	18:00	GEH AM PM
5212 Park Ln @ I-15 NB Ramps	s	IN EB	B E	-	.7 14.		14.1 7.9	10.7 8.5	12.4 13.4	14.8 15.3	14.7 24.9	12.2 19.9	134	149	152	143	253	281	469	464	724	978	982	917	1530	1784	1815	1692	737	1000	989	926	1551	1830	1826	1708	98	98	99	99	99	97	99	99	0.8 1.1
		WB NB	B E D D	· ···	7.0 46.	4 4		12.3 45.7 12.1	11.0 48.2 15.6	11.7 51.7 17.4	12.0 50.4 22.7	10.7 46.9 19.3	149 147	169 160	169 169	149 133	198 312	206 385	205 388	186 297	621 105	850 140	850 136	796 129	925 318	1087 380	1101 376	1023 353	634 103	860 140	850 139	796 130	933 322	1100 380	1098 379	1027 355	98 102	99 100	100 98	100 99	99 99	99 100	100 99	100 100	0.4 0.3 0.1 0.2
5270 US-89 @ 1000 N	S	EB	A C	0 0	.9 1.3	3	1.1	0.6	35.0	38.0	35.5	31.3	0	0	0	0	38	42	39	22	8	8	8	8	20	20	20	18	7	10	10	9	18	20	20	19	110	80	80 100	85	113	102	99	97	0.8 0.2
		WB NB SB		A 6 A 5	.9 8.6 .7 6.4	5 4	25.2 8.5 6.3 8.7	26.2 7.1 6.1 8.3	44.3 5.1 6.8 9.7	42.9 5.6 7.9 10.2	44.4 5.4 7.6 10.1	41.6 4.8 6.8 9.2	91 103 159	113 125 206	112 128 227	97 105 192	174 127 163	202 151 192	187 145 217	163 128 175	105 334 663	138 446 911	138 463 895	129 423 843	165 942 701	200 1132 829	199 1115 830	187 1052 776	103 339 671	140 460 910	138 455 900	129 426 843	170 958 704	200 1130 830	200 1127 828	187 1054 774	102 99 99	99 97 100	100 102 100	100 99 100	97 98 100	100 100 100	99 99 100	100 100 100	0.0 0.2 0.3 0.4 0.2 0.0
53461 2600 S @ 800 W	S	EB WB	A A B E	A 5 3 10	.6 7.7).9 12.	7 3 1	7.4 12.6	6.2 10.4	7.1 9.9	7.9 10.3	8.7 11.1	6.8 9.7	104 283	130 460	137 425	123 284	167 205	169 231	189 250	148 213	399 375	543 504	548 504	509 471	512 492	602 595	604 586	568 551	405 376	550 510	545 504	509 472	499 500	589 590	588 589	550 551	98 100	99 99	101 100	100 100	103 98 98	102 101	103 100	103 100	0.2 1.3 0.2 0.1
53462 800 W @ I-15 SB Off Ramp	s	SB IN WB	C D B E	3 16	0.4 29. 5.9 17. .8 10.	8 1		30.8 17.1 9.7	36.4 17.6	36.4 18.2 11.3	36.4 18.6 11.2	37.7 18.0 10.0	308	334	395	311	260	274	280	257	499	682	683	637	492	592 419	583 416	551 391	509 354	690 480	682	639	356	590 420	589	392	98	99	100	100	100	100	99	100	0.4 0.2
23402 800 W @ 113 38 Off Kallip	3	NB SB	BE	3 9 3 11	.7 10. L.3 12.	6 1 2 1	10.6 12.4	10.1 11.4	9.3 9.9	10.5 11.3	9.9 10.2	9.5 10.1	107 111	130 140	132 126 142	106 108	135 131 114	172 132	144 149 119	114 107	87 174	124 238	115 240	113 222	222 186	265 219	260 220	243 205	88 177	120 240	119 237	111 222	238 186	280 220	280 220	261 205	99 98	104 99	97 101	100 102 100	94 100	95 100	93 100	93 100	0.1 2.1 0.1 0.0
5347 2600 S @ I-15 NB Ramps	S	EB WB	D D B E	3 9	3.6 43. .5 12.	5 4 5 1	43.8 12.5	10.2 43.1 9.9	9.9 36.7 10.1	11.1 35.3 10.3	10.6 36.5 11.1	9.9 38.9 9.2	210 219	295 323	281 316	222 228	449 203	451 234	452 239	448 198	441 1276	608 1748	620 1753	574 1630	685 1206	822 1444	819 1439	772 1348	457 1297	620 1760	613 1740	574 1629	687 1221	810 1440	808 1437	756 1344	97 98	98 99	101 101	100 100	100 99	101 100	101 100	102 100	0.4 0.7 0.2 0.1
5348 2600 S @ Wildcat Way	s	NB IN EB	С С С С В В	2 19 2 18 3 14		8 2		19.7 18.9 15.5	19.5 19.7 14.1	21.3 20.1 17.8	21.2 20.6 18.3	19.2 19.8 14.1	128 194	189 282	260	139 213	267	358	325	265 251	564 740	766	761	712 960	1043	1241	1234	1158	567 767	770	761	713 963	1051	1240	1237	1157 1456	99 97	99	100	100	99	100	100	100	0.2 0.1
		WB NB SB			0.5 38.	0 3	21.1 39.9 31.1	14.7 39.3 29.8	17.2 40.0 25.6	21.8 42.7 26.4	20.8 43.7 26.1	15.7 39.9 25.0	381 130 132	511 172 176	522 161 196	370 139 167	306 171 168	386 222 220	413 209 205	307 169 179	1207 167 194	1651 228 267	1652 226 270	1536 213 250	993 231 260	1182 269 308	1175 268 309	1103 251 288	1224 169 199	1660 230 270	1641 228 267	1537 213 250	1001 229 263	1180 270 310	1177 269 309	1101 252 289	99 99 98	99 99 99	101 99 101	100 100 100	99 101 99	100 99 99	100 99 100	100 100 100	0.2 0.1 0.2 0.1 0.1 0.2
5349 2600 S @ US-89	s	IN EB	c c	2 17 2 37	7.4 22.	2 2	22.8 45.4	18.0 38.1	18.4 45.3	22.0 52.5	22.0 51.9	17.8 43.0	305	395	467	305	462	663	632	495	633	885	900	833	1102	1329	1319	1242	663	900	889	833	1119	1320	1317	1232	95	98	101	100	98	101	100	101	0.6 0.1
		WB NB SB		E 41 D 27 C 22	1.2 52. 7.2 51.	3 5	54.1 51.3	43.5 28.1 23.8	50.5 29.5 27.8	53.9 39.0 33.5	55.8 39.0 33.8	50.3 30.3 27.1	443 240 161	669 588 341	658 798 291	451 242 176	368 263 234	434 361 310	472 367 309	341 256 224	790 480 588	1079 646 807	1081 659 802	1008 609 751	669 835 850	792 989 1010	807 986 1009	749 924 944	803 487 597	1090 660 810	1078 652 801	1009 611 750	679 839 856	800 990 1010	798 988 1007	747 924 943	98 99 98	99 98 100	100 101 100	100 100 100	99 99 99	99 100 100	101 100 100	100 100 100	0.3 0.1 0.3 0.1 0.2 0.0
5350 500 S @ I-15 DDI	s	IN EB	D [33		6 4	46.4 33.1	34.6 34.5	38.2 34.4	44.9 34.1	45.2 34.3	37.5 34.3	156	199	185	168	218	258	250	236	561	766	753	708	823	989	982	924	568	770	761	713	839	990	987	924	99	100	99	99	98	100	99	100	0.4 0.4
		WB NB SB	C C B C B C	2 14 2 8 2 18	4.1 26. .1 10.	9 1	25.3 10.8 19.7	15.7 8.6 18.8	17.6 16.4 20.8	20.7 24.2 23.1	20.9 25.0 21.9	17.9 16.1 21.3	467 89 179	829 113 283	808 125 277	476 93 202	434 391 202	553 582 318	555 707 289	424 429 233	1418 212 472	1933 288 647	1949 289 644	1810 269 602	1571 769 482	1868 908 567	1846 905 570	1738 850 532	1437 214 479	1950 290 650	1928 287 643	1805 269 602	1586 771 484	1870 910 570	1865 908 569	1745 849 532	99 99 99	99 99 100	101 101 100	100 100 100	99 100 100	100 100 100	99 100 100	100 100 100	0.1 0.5 0.0 0.1 0.2 0.1
5352 Parrish Ln @ I-15 SB Ramps	S	EB	<mark>с (</mark> с с	30	3.9 24. 0.9 31.	7 3	24.2 31.4	19.9 30.9	21.1 32.1	24.6 32.1	24.8 30.9	21.3 31.8	157	184	191	158	284	322	308	270	292	412	418	385	663	803	787	742	302	410	405	379	670	790	788	737	97	101	103	101	99	102	100	101	0.3 0.2
		WB SB IN	в (D [с (2 15 0 31 2 22	L.8 38.	6 4		16.0 33.6 23.8	29.7 34.5 31.9	33.4 36.7 33.9	33.7 35.8 33.4	29.0 34.0 31.3	187 189	236 243	238 245	198 194	206 206	233 241	252 243	213 209	887 495	1208 675	1216 669	1128 629	762 571	900 680	909 677	855 635	900 501	1220 680	1206 672	1129 629	780 577	920 680	918 678	859 635	99 99	99 99	101 100	100 100	98 99	98 100	99 100	100 100	0.2 0.9 0.3 0.1
5353 Parrish Ln @ I-15 NB Ramps	S	EB WB NB		3 3. D 38		- 9 7 3	8.7 5.9 38.9 9.1	5.9 3.8 38.3 6.8	4.4 6.1 44.6 7.8	7.8 10.6 45.2 11.5	6.3 10.6 44.2 11.0	4.0 6.0 45.0 7.7	87 111 139	207 189 176	225 192 173	85 128 136	103 300 181	228 320 181	185 322 197	100 303 164	549 1081 448	755 1468 616	762 1492 610	707 1376 572	945 1215 1026	1128 1450 1214	1111 1441 1213	1045 1356 1140	560 1098 457	761 1490 620	751 1473 613	704 1379 574	949 1237 1035	1120 1460 1220	1118 1456 1217	1045 1362 1139	98 98 98	99 99 99	101 101 100	100 100 100	100 98 99	101 99 100	99 99 100	100 100 100	0.0 0.0 0.3 0.7 0.4 0.3
5354 Parrish Ln @ Marketplace Dr	S	EB WB NB	B (C) B (C)		.5 11. .4 11.	2 1 4 1	10.6 11.4	7.9 8.9	17.1 19.2	27.2 23.0	24.4 23.3	15.8 19.2	110 158 124	195 218	167 221 156	120 174	325 266 224	340 338	341 345 248	274 282 214	743 714 184	1037 972 250	1041 968	971 903 231	1657 885	1977 1045 549	1969 1045 544	1846 983 511	766 722	1040 980 250	1028 969 247	963 907	1670 899 467	1970 1060 550	1965 1057 549	1839 989 513	97 99 100	100 99 100	101 100 101	101 100	99 98 99	100 99 100	100 99 99	100 99 100	0.1 0.1 0.3 0.7 0.1 0.3
		SB IN	с (с (в (1.7 24.	0 2	25.2	27.7 26.5 11.6	25.8 32.5 19.9	27.4 31.8 26.4	26.3 32.1 24.9	26.4 32.0 19.3	68	174 88	89	134 73	112	299 118	119	97	132	178	251 177	166	462 210	247	249	232	185 132	250 180	178	232 167	212	250	250	234	100	99	101	100 99	99 99	99	100	99	0.1 0.3 0.2 0.2
5355 Parrish Ln @ 400 W	S	EB WB	A C B C	2 4 9	.7 13.	3 1	7.1 12.9	5.0 9.9	17.0 21.8	27.8 26.7	27.2 26.4	16.0 19.8	63 129	125 168	95 171	68 129	221 192	606 232	482 246	194 185	577 513	798 695	802 691	748 646	1304 693	1546 817	1554 822	1448 765	590 516	800 700	791 692	741 648	1314 695	1550 820	1546 818	1446 765	98 99	100 99	101 100	101 100	99 100	100 100	101 100	100 100	0.1 0.0 0.2 0.0
		NB SB IN	С (В (В (28 2 18 2 12	3.3 18.	0 1	18.3	27.5 17.7 11.8	26.0 24.0 20.7	30.3 24.4 27.6	29.6 24.8 27.2	27.5 23.7 20.0	133 87	171 134	176 119	130 91	221 180	310 200	270 238	224 174	221 272	299 368	300 366	278 341	506 380	597 448	599 447	559 418	221 273	300 370	297 366	278 343	509 381	600 450	599 449	560 420	100 100	100 99	101 100	100 100	99 100	100 100	100 100	100 99	0.1 0.1 0.1 0.2
5358 US-89 @ Eagle Ridge Dr	S	EB WB NB		C 0 C 25 A 6	.0 0.0 5.7 25.) 1 2	0.0	0.0 25.5 7.2	34.3 25.2 7.5	32.5 26.2 9.1	32.3 26.6 9.1	32.1 25.8 7.0	0 232 107	0 354 126	99 618 221	95 371 174	44 141 235	59 162 332	49 165 322	43 138 224	0 597 388	0 815 532	0 809 537	0 759 500	20 485 1301	20 568 1564	20 564 1561	18 531 1468	0 604 398	0 820 540	0 811 534	0 759 500	18 484 1331	20 570 1570	20 569 1566	19 532 1465	99 98	99 98	100 101	100 100	115 100 98	101 100 100	99 99 100	96 100 100	#DIV/0! 0.2 0.2 0.2 0.3 0.5
		SB	A E B E	3 7	.6 9.6	6	9.0 15.3	8.2 14.9	12.3 12.5	12.9 13.6	13.1 13.7	10.9 11.8	95	131	281	198	115	129	134	104	487	678	667	627	598	716	710	668	501	680	672	629	611	720	718	672	97	100	99	100	98	99	99	99	0.5 0.6
5359 Center St @ US-89	S	EB WB			5.2 26.	8 2		24.7 26.6	23.6 22.7	22.6 23.6	22.3 23.8	23.8 22.2	170 135	191 194	214 201	200 160	150 130	172 132	158 140	148 112	210 167	301 229	295 224	278 213	269 165	313 200	312 199	291 186	229 170	310 230	306 228	287 213	272 170	320 200	319 200	299 187	92 99	97 100	97 99	97 100	99 98	98 100	98 99	97 100	1.4 0.7 0.2 0.2
		NB SB IN	B E B E	3 8	2.8 18. .4 11. 5.5 18.	2 1	10.9	14.9 8.9 17.0	10.5 10.3 14.1	12.0 12.1 15.2		10.7 10.4 14.2	102 105	129 143	172 269	150 195	249 93	281 112	263 111	218 106	195 365	271 498	282 494	259 462	664 399	810 467	828 467	768 438	207 369	280 500	277 495	259 463	687 399	810 470	808 469	756 439	94 99	97 100	102 100	100 100	97 100	100 99	103 100	102 100	0.5 0.2 0.1 0.1
5362 500 S @ US-89	S	EB WB	C (2 19 2 18	5.4 20.	8 2	20.3 27.6	17.2 20.6	25.1 32.8	32.4	31.3 38.4	24.4 31.5	186 313	241 453	239 429	206 322	364 399	468 541	478 520	359 379	654 719	939 996	926 974	867 916	1230 942	1485 1120	1494 1115	1399 1047	686 729	930 990	919 979	861 917	1264 950	1490 1120	1486 1117	1390 1045	95 99	101 101	101 99	101 100	97 99	100 100	101 100	101 100	0.2 0.3 0.2 0.1
		NB SB	C E	25	5.1 25.	0 2	25.3	23.0 22.3	42.4 43.1	49.2 54.5	48.0	42.7 42.7	214 138	266 182	248 168	180 149	379 360	459 489	463 496	355 343	431 466	582 636	586 627	545 591	971 873	1148 1040	1145 1036	1074 972	435 472	590 640	583 633	546 592	975 882	1150 1040	1147 1038	1073 971	99 99	99 99	101 99	100 100	100 99	100 100	100 100	100 100	0.2 0.1 0.3 0.1
5363 400 N @ US-89	S	IN EB	с с с с	b 19 b 24	2.9 24. 1.4 25.		24.0 25.3	20.4 24.4	35.1 29.3	42.9 34.6	42.3 35.5	34.4 29.2	148	181	179	156	353	447	453	355	393	540	542	503	903	1061	1071	1004	406	550	544	509	907	1070	1068	999	97	98	100	99	100	99	100	100	0.7 0.1
		WB NB	D C	0 17		9 2	34.4 20.4	30.1 18.9	31.4 41.0	39.8 47.2	39.0 47.2	31.4 40.1	339 82	587 109	502 110	365 92	397 381	532 532	531 509	403 371	607 264	821 361	817 357	768 333	849 840	1008 998	1007 994	945 934	612 266	830 360	820 356	768 333	856 848	1010 1000	1007 998	943 933	99 99	99 100	100 100	100 100	99 99	100 100	100 100	100 100	0.3 0.1 0.0 0.2
		SB IN	в [с [0 22	2.2 25.	6 2	19.6 25.5	16.4 22.7	41.6 35.5	47.9 42.1	48.8 42.3	41.0 35.1	207	276	281	217	268	343	430	272	664	925	911	854	711	851	858	798	678	920	910	852	721	850	848	793	98	101	100	100	99	100	101	101	0.1 0.1
5389 Parrish Ln @ 1250 W	S	EB WB NB	B E B E B C			2 :	12.8 10.8 15.1	9.9 9.1 14.0	14.3 13.8 15.4	16.2 16.7 19.6	16.4 17.3 21.4	14.4 14.3 16.0	64 119 111	74 187 115	72 189 121	64 144 110	97 163 176	122 199 224	111 216 264	102 182 177	291 489 254	396 672 348	395 669 347	369 622 324	419 427 485	492 515 568	498 515 567	463 485 531	295 494 258	400 670 350	396 662 346	370 620 324	424 441 483	500 520 570	499 519 569	467 485 532	99 99 99	99 100 100	100 101 100	100 100 100	99 97 100	98 99 100	100 99 100	99 100 100	0.3 0.4 0.1 0.5 0.1 0.1
		SB IN	в (в е	16 3 10	5.7 19.			16.3 11.1	19.6 15.5	24.8 19.0	24.8 19.7	18.0 15.5	94	116	101	94	167	210	209	146	106	149	147	138	303	359	358	335	111	150	149	139	305	360	359	336	95	100	99	99	99	100	100	100	0.4 0.2
5853 W State St @ 650 W	S	EB WB NB	A E B E B E			5 1	8.3 10.9 10.5	7.3 10.2 9.9	9.8 12.7 15.2	12.3 14.6 16.9	11.8 14.3 17.9	9.1 12.0 14.9	133 107 65	165 170 85	161 139 80	123 118 67	246 190 107	382 306 116	382 290 128	203 218 102	426 316 174	582 433 238	571 436 240	536 404 222	674 607 231	800 726 268	800 730 269	748 680 251	428 317 177	580 430 240	574 426 237	537 398 222	679 619 229	800 730 270	798 728 270	746 681 252	100 100 98	100 101 99	100 102 101	100 101 100	99 98 101	100 99 99	100 100 100	100 100 100	0.1 0.0 0.5 0.3 0.1 0.1
5857 W Glovers Ln @ 650 W	s	SB IN EB	B E B E	3 16 3 8	5.0 18. .8 10.	3	16.3 9.8	14.1 9.0 11.0	15.6 11.9 9.2	17.7 14.0 10.8	18.1 13.8 10.9	17.2 11.3 9.7	24	43	24	24	40	42	42	39	29	40	40	36	42	48	47	45	30	40	40	37	43	50	50	47	98	100	99	97	98	95	95	97	0.2 0.5
	3	WB NB SB	B E B E B E	3 8 3 14		6 1 2 1	11.6 17.3	8.8 15.5 16.7	9.2 8.9 14.7 15.4	10.8 10.8 17.1 16.9	10.9 10.5 15.4 15.8	9.7 9.0 14.9 15.6	81 26 86	176 112 42 108	175 112 41 107	81 36 87	139 43 69	101 182 44 87	105 174 42 91	131 42 71	152 34 115	210 48 158	446 204 48 157	415 196 45 147	327 42 115	200 378 48 140	199 379 48 140	354 45 131	352 154 37 118	430 210 50 160	443 208 50 159	417 194 46 148	322 42 119	200 380 50 140	200 379 50 140	355 47 131	99 99 91 98	99 100 97 99	98 96 99	100 101 98 99	97 102 99 97	100 100 97 100	100 100 95 100	100 100 97 100	0.2 0.2 0.1 0.1 0.6 0.4 0.3 0.2
		SB IN					19.6 13.8				15.8 11.9	15.6 10.8	80	109	107	67	69	67	91	/1	115	100	10/	14/	115	140	140	101	110	100	132	140	113	140	140	131	30	23	33	33	37	100	100	100	0.0 0.2

			Worst C	ase LOS	1			Dela	ay (Sec)				1		95t	h Percentil	e Queue (F	eet)			1			Volum	e Served				1			Volume D	Demand							Percen	t Served			1	GE	4
Int # Intersection Name	Control	Approach		PM	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	AM	PM
7068 900 W @ 1000 N	S	EB	В	С	12.6	17.9	17.2	12.7	17.9	20.0	20.2	16.4	264	487	521	331	185	228	243	175	545	746	740	693	398	467	468	438	553	750	742	695	398	470	469	439	99	99	100	100	100	99	100	100	0.3	0.1
		NB	B	c	13.7	20.0	19.5	14.7	18.4	32.5	30.2	17.0	156	252	520	283	262	556	484	244	349	477	473	443	520	617	618	580	354	480	475	444	525	620	619	579	99	99	100	100	99	100	100	100	0.2	0.1
		SB	۵ ۵	Δ	61	7.4	6.9	63	65	6.8	7.2	63	57	81	84	80	82	106	104	102	100	1/15	1/6	136	272	320	322	200	111	150	1/18	130	272	320	310	200	98	97	90	98	100	100	101	100	0.5	0.1
		IN		ĉ	12.1	17.7	16.5	12 5	15.3	22.2	21.4	14.3	5,	01	04	00	02	100	104	102	105	145	140	150	212	520	522	255		150	140	155	272	520	515	255	50	57	55	50	100	100	101	100	0.5	0.1
7122 600 N @ 300 W	6	EB	6	<u> </u>	16.3	21.4	22.7	12.3	14.2	15.5	15.5	14.3	272	576	755	672	174	222	212	105	704	1076	1000	1000	402	612	F 90	FF.C	802	1000	1070	1000	500	500	F 90	FF1	0.0	00	100	100	07	104		101	0.5	0.0
7122 BOON @ 300 W	5	WB		D C		21.4	22.7	17.9	14.5	15.5	15.5	14.0	3/2	570	755	0/2	1/4	222	212	195	220	10/6	1060	1009	465	012	260	242	200	1090	1078	1009	500	390	269	242	98	99	100	100	97	104	99	101	0.5	
			L C	L .	28.1	26.4	28.2	28.0	29.5	28.7	29.5	29.6	208	254	396	303	193	221	247	196	228	308	310	288	219	260	257	242	229	310	307	287	221	260	260	243	100	99	101	100	99	100	99			0.1
		NB	C	F	18.1	30.2	31.8	18.4	19.6	56.8	92.2	35.3	200	370	1441	1618	543	991	1321	854	394	532	535	498	1022	1200	1189	1129	398	540	534	500	1026	1210	1207	1129	99	99	100	100	100	99	99	100	0.3	0.5
		SB	С	С	18.3	25.0	24.9	19.6	22.9	26.1	25.0	21.9	190	236	242	211	159	184	169	168	630	857	850	795	276	328	328	307	634	860	850	796	280	330	329	308	99	100	100	100	99	99	100	100	0.1	0.2
		IN	С	E	18.6	24.8	25.7	19.6	19.9	39.2	56.9	28.2																																		
7372 600 N @ 400 W	S	EB	С	В	15.2	22.8	21.9	16.4	15.8	18.4	17.6	15.4	472	765	1829	1824	242	272	258	212	1261	1719	1725	1613	803	975	953	900	1290	1750	1730	1620	814	960	958	896	98	98	100	100	99	102	100	100	0.9	0.1
		WB	С	С	16.0	21.4	20.0	17.6	17.8	19.8	21.2	18.2	193	260	333	303	321	381	414	337	468	644	649	601	856	1016	1015	964	479	650	643	602	874	1030	1027	961	98	99	101	100	98	99	99	100	0.2	0.7
		NB	D	D	30.3	34.8	36.1	31.4	47.9	54.5	51.2	43.6	135	164	246	200	349	458	380	241	240	325	327	304	470	560	552	522	243	330	327	306	475	560	559	523	98	98	100	99	99	100	99	100	0.3	0.3
		SB	В	D	15.2	19.9	19.2	15.5	23.0	36.6	49.9	29.7	97	147	130	114	230	314	485	346	116	158	157	146	328	387	386	362	118	160	159	148	331	390	389	364	99	98	99	99	99	99	99	99	0.3	0.3
		IN	с	с	17.1	23.7	23.0	18.3	23.6	28.1	29.6	23.6																																		
7501 Beck St @ N Chicago St	S	EB	D	D	34.2	37.6	38.0	34.0	31.9	34.2	34.8	36.6	62	89	118	87	38	63	46	39	51	71	72	67	25	31	27	28	52	70	70	65	26	30	30	28	97	102	103	103	95	103	89	100	0.2	0.4
		NB	в	А	10.1	13.5	13.5	10.6	5.8	6.5	6.9	5.4	90	117	165	133	177	206	216	170	388	527	523	490	1254	1469	1481	1381	391	530	525	491	1255	1480	1476	1381	99	100	100	100	100	99	100	100	0.2	0.1
		SB	в	А	9.4	13.1	13.6	10.5	5.9	6.1	6.3	5.6	251	368	480	318	91	107	102	83	1437	1985	1989	1856	378	453	458	426	1474	2000	1977	1851	391	460	459	429	97	99	101	100	97	98	100	99	0.4	0.6
		IN	в	Α	10.9	14.5	15.0	11.8	7.1	7.7	8.0	6.7	-																							-										
7619 600 N @ I-15 SPUI	s	EB	D	D	33.6	40.5	40.5	36.0	40.8	45.6	46.4	42.7	137	256	496	336	107	119	127	102	736	1009	1005	942	507	591	606	560	752	1020	1009	944	509	600	598	560	98	99	100	100	100	99	101	100	0.5	0.1
	-	WB	-	- C	25.6	20.0	30.5	26.6	20.0	34.5	33.0	28.0	216	266	372	311	310	405	303	333	756	1033	1047	970	1530	1845	1812	1731	774	1050	1038	972	1568	1850	18/15	1726	98	98	101	100	98	100	98	100	0.4	0.8
		NB	Ċ	0	28.4	20.0	22.0	20.0	20.0	27.0	27 5	20.5	120	175	1676	666	207	221	225	250	025	1126	1110	1046	022	1007	1002	1026	022	1120	1117	1046	022	1100	1097	1027	00	100	100	100	100	100	100	100	0.2	0.0
		SB		c	20.4	22.1	21.7	29.3	24.0	37.0	25.0	34.0 24 E	200	202	260	260	152	101	170	156	442	601	602	1040 E62	276	1057	1050	419	450	£10	602	1040	202	450	1057	420	00	100	100	100	100	100	100	100	0.2	0.1
		IN		5	27.1	32.0 32.8	33.1	28.7	24.0 30.8	35.2	25.9 34.8	24.5 30.9	200	202	300	209	102	101	1/9	150	442	001	002	302	370	449	431	419	+50	010	005	202	302	450	449	+20	30	39	100	100	39	100	100	100	0.4	0.1
		IN	Ľ	U	28.0	52.8	33.1	29.4	30.8	35.2	34.8	30.9	-								-																							L		

Appendix H VISSIM Intersection Analysis Results, 2050 No-Action

			Worst Ca						y (Sec)								e Queue (Fe							Volume								Volume Dem				1				t Served				GEH
		S EB	n AM B	PM F	6:00 8.8	7:00 16.6	8:00 15.6	9:00 9.3	15:00 27.2	16:00 69.8			6:00 196	7:00 426	8:00 470	9:00 210	15:00 690	16:00 1601	17:00 1689	18:00 1519	6:00 508	7:00 690	8:00 681	9:00 638	15:00 626	16:00 732	17:00 740	18:00 696	6:00 501	7:00 680	8:00 672	9:00 1 630 6	27 740	17:00 738		6:00 101.5		8:00 101.3	9:00 101.3	15:00 99.8	16:00 98.9	17:00 100.3	18:00 100.8	
			-	F C										-	0	-	0,														-13-1													
I I I I </td <td>100 Frontago Pd @ 200 W SP</td> <td>IN</td> <td>В</td> <td>E</td> <td>9.0</td> <td>13.8</td> <td>13.5</td> <td>9.5</td> <td>24.0</td> <td>62.1</td> <td>78.9</td> <td>40.2</td> <td></td> <td></td> <td>EQ</td> <td>E.4</td> <td></td> <td></td> <td>190</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>207</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>217</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	100 Frontago Pd @ 200 W SP	IN	В	E	9.0	13.8	13.5	9.5	24.0	62.1	78.9	40.2			EQ	E.4			190									207							217									
No. 1. Second s	109 FIOIRage Rd @ 200 W SB	SB	-	-	-	-	-	-	-	-	-	-			0	0	0	0	0	0								-			494													
Norway Norway </td <td>110 (EB) Frontage Rd @ 200 W NB</td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>43</td> <td>62</td> <td>59</td> <td>43</td> <td>38</td> <td>40</td> <td>40</td> <td>40</td> <td>108</td> <td>150</td> <td>148</td> <td>138</td> <td>69</td> <td>81</td> <td>80</td> <td>75</td> <td>111</td> <td>150</td> <td>149</td> <td>139</td> <td>58 80</td> <td>80</td> <td>75</td> <td>97.4</td> <td>100.2</td> <td>99.9</td> <td>99.2</td> <td>102.4</td> <td>100.7</td> <td>100.0</td> <td>100.5</td> <td>0.2 0.:</td>	110 (EB) Frontage Rd @ 200 W NB			-									43	62	59	43	38	40	40	40	108	150	148	138	69	81	80	75	111	150	149	139	58 80	80	75	97.4	100.2	99.9	99.2	102.4	100.7	100.0	100.5	0.2 0.:
			В -	F -													315 0	520 0	523 0	520 0			289 0		429 0	489 0																		
		IN	в	F										-	-	-					-	-					-	-																
	111 W Glovers Ln @ Farmington Hig		-	-	-	-	-	-	-	-	-	-					0	0	0	0																								
			A A	A A			9.6 9.6						51	62	59	53	51	55	52	49	116	158	157	147	92	108	108	101	118	160	158	148	93 110	110	103	98.3	98.5	99.4	99.0	98.8	98.0	98.5	98.3	0.3 0.3
NoteNo	112 W Glovers Ln @ Frontage Rd	S EB		D	10.2	13.3	13.2	10.4	29.3	49.6	51.6	27.9				94																												
			-																																									
11			A	-									63	94	86	76	96	126	125	99	169	229	225	213	200	241	239	224	170	230	228	213	03 240	240	224	99.5	99.6	99.0	100.1	98.3	100.2	99.6	100.1	0.1 0.:
Image	113 Parrish Ln @ SR-67 SB Ramps	U WB	-	-	-	-	-	-	-	-	-	-			-		0	0	0	0																								
Image: Section of the section of th													121	218	220	118	117	142	146	105	253	348	348	324	268	321	320	299	258	350	346	324 2	72 320	319	299	97.9	99.4	100.5	100.1	98.6	100.3	100.1	100.2	0.1 0.:
	114 Parrish Ln @ SR-67 NB Ramps		-	-	-	-	-	-	-	-	-	-	0		0	0	0	0	0			348 330	348 329						0	0	0	0												
		NB	F		27.3							12.9			-		-	-	-										-	-	-	-				96.9	87.0	88.5	94.9	99.7	99.9	99.4	99.7	
No <td>115 Parrish Ln @ (NB) 700 W</td> <td></td> <td>- F</td> <td>D -</td> <td>27.3</td> <td>225.8</td> <td>526.8</td> <td>521.0</td> <td>14.8</td> <td>25.1</td> <td>21.5</td> <td>12.9</td> <td>95</td> <td>136</td> <td>144</td> <td>107</td> <td>369</td> <td>374</td> <td>373</td> <td>373</td> <td>1075</td> <td>1374</td> <td>1386</td> <td>1333</td> <td>1819</td> <td>1858</td> <td>1882</td> <td>1931</td> <td>2108</td> <td>2860</td> <td>2827</td> <td>2648 3</td> <td>747 4420</td> <td>4410</td> <td>4125</td> <td>51.0</td> <td>48.0</td> <td>49.0</td> <td>50.3</td> <td>48.5</td> <td>42.0</td> <td>42.7</td> <td>46.8</td> <td>59.7 83.</td>	115 Parrish Ln @ (NB) 700 W		- F	D -	27.3	225.8	526.8	521.0	14.8	25.1	21.5	12.9	95	136	144	107	369	374	373	373	1075	1374	1386	1333	1819	1858	1882	1931	2108	2860	2827	2648 3	747 4420	4410	4125	51.0	48.0	49.0	50.3	48.5	42.0	42.7	46.8	59.7 83.
HII			-	-	-	- 76	-	-	-	-	- 102 E			-	-	-																												
		SB		F	19.3	67.1	116.5	40.2	41.4	235.6	272.1	160.8						372													386													
	201 400 N @ 800 W		F A	F			116.5 7.5	40.2 6.7	41.4 11.8				67	103	90	83	329	427	446	315	197	268	269	214	691	819	777	596	199	270	267	214 (96 820	818	658	98.8	99.2	100.9	100.0	99.4	99.9	95.0	90.5	0.1 2.0
H L <thl< th=""> L L <thl< th=""> <thl< th=""></thl<></thl<></thl<>																																												
V N V V V V V V V V V V V V V V V V V V V V V V V<		SB		-	20.6	21.3	20.6	20.2	21.6	29.7	29.5	23.5					84																											
H A A A A B	202 400 N @ 660 W Access		- A	- C	- 8.8	9.5	9.2	8.8	14.3	21.8	20.2	14.5	0	0	0	0	0	0	0	0	285	387	387	362	572	672	639	598	288	390	386	361	68 670	669	625	98.9	99.3	100.2	100.3	100.8	100.3	95.5	95.6	0.1 1.0
H A A B A B B B B B B			-	-	- 76	- 76	- 76	-	- 7 9	-	- 7.9		-	0	0	0	0	0	0	-		386									386	361 4		• ••										
		NB		~	6.0	6.4	6.3	6.0	6.6	7.8	7.4	6.4		49	49	48	48	67	49	47				101	97					20	119	111 :	02 120											
H H H H H <td>204 400 N @ 660 W</td> <td></td> <td>A</td> <td>A</td> <td></td> <td>710</td> <td>710</td> <td>717</td> <td></td> <td></td> <td></td> <td></td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>26</td> <td>27</td> <td>27</td> <td>26</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>31</td> <td>40</td> <td>40</td> <td>36</td> <td>0</td> <td>0</td> <td>0</td> <td>0</td> <td>34 40</td> <td>40</td> <td>37</td> <td></td> <td></td> <td></td> <td></td> <td>90.9</td> <td>100.3</td> <td>99.9</td> <td>96.8 #</td> <td>#DIV/0! 0.3</td>	204 400 N @ 660 W		A	A		710	710	717					0	0	0	0	26	27	27	26	0	0	0	0	31	40	40	36	0	0	0	0	34 40	40	37					90.9	100.3	99.9	96.8 #	#DIV/0! 0.3
			-	-	-	-	-	-	-	-	-			0	0	0	0	0	0	0					39							10	.5 50											
i i i i i		IN	A	A	0.0	0.0	0.0	0.0	5.8	6.0	6.0		0	0	U	U	U	U	0	U	90	150	120	119	67	80	80	/3	90	150	129	120	06 60	80	75	99.8	100.1	98.1	99.2	98.7	99.8	100.1	97.0	
	205 400 N @ I-15 SB On Ramp			C F			12.5 11.7	9.9 8.0										859 642				706 1051	708 1063	664 992	1134 946																			
H H<	200 400 N @ L 15 ND Off Down			F				9.1					174	244	242	106	220	850	F 80	222	517	706	709	664	1124	1252	1201	1200	F 20	720	700	676 1	144 1250	1246	1260	06.2	06.0	08.1	08.2	00.1	100.2	05.0	05.0	12 1
	200 400 N @ 1-15 NB OT Kattip	WB	в	F	7.0	11.5	11.7		12.2	17.4	19.8	85.0	341	492	485	372	460	642	675	474	776	1051		992	946	1002	985	957	789	1070	1058	990	92 1170	1167	1092	98.4	98.2	100.5	100.2	95.4	85.7	84.4	87.6	0.4 8.3
1 1 1 1			C B	F									82	113	112	83	1700	2439	2444	2449	406	547	542	508	859	990	981	910	405	550	544	509 8	65 1020	1018	952	100.2	99.6	99.7	99.9	99.4	97.1	96.5	95.6	0.1 1.8
N N N	207 500 S @ 800 W		-	-	-	-	-	-	-	-	-	-			0	0																537 1		1396										
			A	F		7.4	7.5		7.9	18.3		26.8		-	55	40	-						89							90	89	544												
	208 500 S @ (NB) 700 W		A .	F -	6.9	7.4	7.5	7.0	7.9	18.3	219.4	26.8	0	0	0	0	442	869	869	869	421	577	569	537	992	1154	1210	1118	427	580	574	537 1	009 1190	1187	1111	98.5	99.4	99.1	99.9	98.3	96.9	101.9	100.7	0.3 0.3
</td <td></td> <td>WB</td> <td>-</td> <td>-</td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>901</td> <td>896</td> <td>973</td> <td></td> <td>88.5</td> <td>94.1</td> <td>0.4 5.3</td>		WB	-	-		-	-	-	-	-	-	-															901	896	973													88.5	94.1	0.4 5.3
		SB			10.4	11.2	10.5	10.0	13.0	25.3	23.5	20.7							51					36							40	37	34 490											
	209 2600 S @ 1100 W		B	F B									103	119	120	102	201	244	1480	1480	312	428	425	398	690	821	815	766	317	430	425	398 6	95 820	818	765	98.5	99.7	100.0	100.1	99.4	100.1	99.6	100.1	0.1 0.:
P P P P P P P P P P P P P P P P P P P P <		WB	В	В	9.8	11.5	11.5	9.9		11.5	11.7	10.5	129	146	161	136	118	127	1919	2077	371	479	496	468	342	390	375	371	376	510	504	472	48 410	409	383	98.5	93.9	98.4	99.3	98.3	95.2			1.1 1.3
		SB	с	F	25.0	33.4	31.2	23.8	63.1	255.1	393.7	303.6																			217													
I N N N N N N N N N N N N N N N N N N N	210 2600 S @ Overland Rd		- B	F -	- 13.5	- 16.4	- 16.0	- 13.4	24.6	60.7	82.9		0	0	0	0	0	0	0	0	331	457	454	425	694	809	818	775	339	460	455	426	04 830	828	775	97.6	99.4	99.9	99.8	98.6	97.5	98.7	100.1	0.3 0.1
</td <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td>-</td> <td></td>						-			-	-																																		
N N N N N N N N N N N N N N N N N N		IN		- 1	7.3							9.5															-												-					
10 Centry @ 1453 0 (78m)2 V V V V V V V V V V V V V V V V V V <td>211 2600 S @ 400 E</td> <td></td> <td>- A</td> <td>- F</td> <td></td> <td>- 8.1</td> <td>- 8.6</td> <td>- 7.9</td> <td>- 12.0</td> <td>- 37.1</td> <td>67.9</td> <td></td> <td>907 7</td> <td></td>	211 2600 S @ 400 E		- A	- F		- 8.1	- 8.6	- 7.9	- 12.0	- 37.1	67.9																		907 7															
N N N N N N <tbr></tbr>	301 Center St @ L-15 SB Off Romp SF		Α	F	7.8	8.1	8.6	7.9	12.0	37.1	67.9	57.7	0	0	0	0	0	0	0	0	246	337	337	31/	569	668	666	623	251	340	336	215	68 670	668	625	98.2	99.1	100.1	99.7	100 1	99.7	99.7	99.7	0.2 0.5
1 <th1< th=""> 1 1 1 1 1<td>Sol Center St @ P15 Sb On Kamp Se</td><td>WB</td><td>-</td><td></td><td></td><td>-</td><td></td><td>-</td><td></td><td></td><td></td><td></td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td>0</td><td>345</td><td>491</td><td>484</td><td>455</td><td>299</td><td>350</td><td>330</td><td>317</td><td>362</td><td>490</td><td>485</td><td>454</td><td>97 350</td><td>349</td><td>327</td><td>95.5</td><td>100.2</td><td>100.0</td><td>100.4</td><td>100.7</td><td>100.1</td><td>94.6</td><td>97.1</td><td>0.3 0.3</td></th1<>	Sol Center St @ P15 Sb On Kamp Se	WB	-			-		-					0	0						0	345	491	484	455	299	350	330	317	362	490	485	454	97 350	349	327	95.5	100.2	100.0	100.4	100.7	100.1	94.6	97.1	0.3 0.3
No. No. No. No. No. No. No. No. <			F	с с									313	1472	3133	2955	129	213	239	127	383	486	503	491	318	379	396	366	390	530	524	491 3	22 380	379	355	98.3	91.7	96.0	100.0	98.8	99.7	104.5	103.1	1.7 0.0
N N N N N N <	302 Center St @ Main St	S EB	-	B	8.6	12.2	11.8	9.3	12.3	14.9	15.9	11.8																																
1 1		NB	D	5	33.1	38.0	38.2	36.0	37.0	41.8	40.1	35.7	208	296	308	241	301	370	340	262	241	327	326	305	319	380	357	342	243	330	326	305	22 380	379	355	99.1	99.3	100.0	99.7	99.0	100.0	94.3	96.4	0.2 1.0
30 95.89 8.1 9.0 3.3 3.3 3.0 <			с с	с с									87	117	108	108	88	111	131	104	107	150	145	137	115	140	140	131	111	150	148	139 :	19 140	140	131	96.7	99.9	97.8	99.0	97.2	99.9	100.1	100.1	0.4 0.3
1 1 8 4 8 4 5 8 6 5 6 </td <td>303 US-89 @ Main St</td> <td>S EB</td> <td></td> <td></td> <td>38.3</td> <td>36.3</td> <td>37.0</td> <td>37.9</td> <td>37.1</td> <td>39.5</td> <td>38.4</td> <td>34.2</td> <td></td>	303 US-89 @ Main St	S EB			38.3	36.3	37.0	37.9	37.1	39.5	38.4	34.2																																
304 US 89 @ Eaglegate Dr U WB A B 8.5 8.9 8.9 8.2 8.9 1.4.2 1.0.9 6.3 6.6 6.5 6.1 5.5 5.2 7.0 6.9 6.5 5.1 6.0 6.0 5.6 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.2 9.7 9.0 9.7 9.11 9.7 0.2 0.1 NB -		SB			4.3	5.1	4.8	4.5	8.7	10.5	10.6	8.5																																
NB	304 US-89 @ Eaglegate Dr		<u>А</u> А	BB									63	66	65	62	63	66	64	58	52	69	68	63	51	60	61	55	52	70	69	65	51 60	60	56	99.7	99.2	98.7	96.8	100.0	99.7	101.1	97.7	0.2 0.1
1 1		NB	-	-	-	-	-	-	-	-	-	-	0	0	0	0			0	0	753	1031	1055	976	2018	2404	2165	2102	774	1050	1038		043 2410	2404	2249	97.3	98.2	101.6	100.4	98.8	99.7	90.0	93.5	0.3 4.4
NB -		IN	A	B	8.5	8.9	8.9	8.2	8.9	14.2	10.9	8.0		100	200	10	U	1/	U	U	1484	2040	2050	1911	1183	1412	1345			2000	2037	190/ 1	204 1420	1417	1325	97.8	99.0	100.7	100.2	98.2	99.4			
sh sh <th< td=""><td>309 Warm Springs @ I-15 NB Ramps</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	309 Warm Springs @ I-15 NB Ramps																																											
310 (NB) Warm Springs @ 1800 N U WB - <t< td=""><td></td><td>SB</td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td></td><td></td><td>-</td><td>0</td><td>0</td><td>0</td><td>0</td><td>0</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		SB			-	-	-	-	-	-	-	-			-	0	0	0	0	0																								
SB A B 8.8 9.3 9.0 8.7 11.7 12.9 13.2 11.1 113 134 132 130 173 179 196 151 137 186 189 176 228 266 265 247 140 190 188 176 229 270 269 252 97.8 97.7 100.8 100.2 99.6 98.5 98.4 98.2 0.2 0.4	310 (NB) Warm Springs @ 1800 N		- E	-	- 16.3							-	0	0	0	0	0	0	0	0									37	50	50	47	77 90		84					100.3	100.0	82.7	89.5	0.7 1.3
															-32		2.5					_00		2.0			_00						2/0	200	232	57.0	5	_00.0	19012					

			Worst Cas						lay (Sec)								e Queue (Fe			1				Volume	Served			I				Volume Der	nand							Percent	Served				GE	н
Int # Intersection Name 311 N Chicago St @ 1800 N	Contro U	I Approach EB	AM A	PM A	6:00 7.1	7:00 7.3	8:00 7.3	9:00 6.9				10.00	6:00 78	7:00 80	8:00 79	9:00 78	15:00 86	16:00 100	17:00 99	18:00 83	6:00 102	7:00 144	8:00 142	9:00 134	15:00 206	16:00 236	17:00 223	18:00 213	6:00 104	7:00 140	8:00 138		10100 1		100 10			7:00 102.7	8:00 103.1	9:00 103.4	15:00 101.1	16:00 98.3	17:00 93.0	18:00 94.9	AM 0.5	PM 1.0
		NB SB	A		0.3 0.3	0.5 0.3	0.5 0.2	0.8 0.1	0.6 0.5	1.1 0.6		0.9 0.3	0	0	0	0	0	0	0	0	22 37	28 49	28 49	26 45	31 77	40 94	40 74	37 76	22 37	30 50	30 50		•		40 3 90 8		98.4 99.9	94.1 98.6	93.8 97.9	93.4 97.1	90.5 100.3	99.3 104.6	100.3 81.8	98.9 90.5		0.3
		IN	A A	A	0.5 7.1	7.3	7.3	6.9	8.1	9.0	8.8	8.1	0	U	0	0	U	U	0	Ŭ	57		-15			54			57	50	50	47														1.1
312 900 N @ Warm Springs Connec	t U	WB NB	A -	с -	7.0	8.0	8.0	7.0				12.6	56	82 0	84 0	71 0	148 0	174 0	180 0	166 0	99 178	130 235	142 240	127 223	231 274	275 288	252 317	243 298	60 177	80 240	79 237							163.4 97.6	179.9 101.0	172.3 100.1	118.4 95.1	119.6 84.8	109.7 93.4	113.4 93.9	10.4 0.1	4.3 3.1
		IN	А	с	7.0	8.0	8.0	7.0	12.6	16.8	15.4	12.6		-					0				-				-																			
313 Warm Springs @ Warm Springs	U	EB NB	A -	A -	7.1	7.1	7.3	6.8				7.4	30	32 0	32 0	29 0	31 21	29 49	30 41	31 0	68 41	87 60	89 60	82 56	67 151	69 179	71 149	67 149	67 45	90 60	89 60	05			80 7 80 1		101.7 91.7	96.5 100.1	100.5 101.3	98.0 101.0	98.7 99.5	86.6 99.4	89.2 82.6	90.6 88.5	0.2 0.2	1.6 2.1
		SB IN	-	-	-	-	-	-				-	0	0	0	0	0	51	39	0	72	94	100	91	165	197	188	179	74	100	99	93	170 2	200 2	00 1	.87	97.0	94.3	101.7	98.0	97.1	98.4	94.4	95.7	0.4	1.0
314 900 N @ I-15	U	EB	B	C C	7.1 9.5	7.1 11.1	7.3 10.6	6.8 9.5				7.4 8.9	102	120	113	104	246	318	104	77	167	230	226	214	363	428	180	250	170	230	228	213	365 4	130 4	29 4	02	98.7	100.0	99.0	100.3	99.6	99.5	42.0	62.3	0.1	10.7
		NB SB	-	-	-	-	-	-	-	-	-	-	0	0	0	0	0	0	0	0	172 74	226 97	227 107	213 96	211 200	224 239	288 213	259 210	170 45	230 60	227 59				69 2 99 1		101.2 166.3	98.1 162.7	99.9 180.8	100.0 172.5	92.3 118.2	83.0 119.3		102.7 112.5	0.1 9.0	1.2 3.8
		IN	В	c	9.5	11.1	10.6	9.5				8.9	0	0	0	0	0	0	0	0	/4	57	107	50	200	235	215	210	40	00	39	55	170 2	.00	55 1	.0/ .	100.5	102.7	100.0	172.5	110.2	115.5			5.0	
315 600 N @ (NB) 8th W	U	EB WB	-	-	-	-	-	-	-	-	-	-	16 26	20 70	20 66	16 51	16 79	16 71	18 83	0 65	718 702	987 843	978 806	914 831	752 1352	907 1580	905 1471	844 1428	729 722	990 980	979 969						98.5 97.2	99.7 86.0	99.9 83.1	99.8 91.6	98.5 99.6	100.9 98.8		100.5 95.7	0.3 6.8	0.1 2.8
		NB	В	А	8.0	10.1	10.1	7.8				6.3	94	121	122	95	71	72	73	70	151	208	206	193	92	108	108	101	155	210	208	195				.03	97.9	98.7	99.2	99.1	98.5	98.3	98.1	98.4	0.3	0.3
		SB IN	A B	A A	5.9 8.0	6.1 10.1	5.8 10.1	5.9 7.8	5.7 6.3	5.8 6.3	5.7 6.4	5.6 6.3	33	39	34	34	31	31	30	30	34	48	48	45	8	8	8	8	37	50	50	47	9	10	10	9	92.5	95.7	95.8	97.0	91.4	79.0	80.6	85.4	0.6	1.0
1003 600 N @ 900 W	S	EB	B	С	12.3	16.4	16.0	13.3					162	232	219	155	207	261	274	212 374	568 628	774 760	773 732	615 750	716	851	846	686	575	780 880	771						98.8	99.3	100.3 84.1	99.9	99.4	100.1		100.7	0.2	0.0
		WB NB	В		10.3 14.6	13.1 16.1	13.2 15.9	11.2 14.8					142 74	173 109	173 106	155 74	413 173	695 232	515 206	374 168	238	328	325	305	1198 428	1401 509	1310 506	1271 473	649 243	330	870 326						96.9 98.1	86.4 99.6	84.1 99.7	92.1 99.7	99.5 98.9	98.7 99.7	92.5 99.5	95.9 99.5		2.6 0.2
		SB	B	c	17.3 12.6	18.9 15.6	19.6 15.6	17.1 13.2					109	140	133	97	129	155	136	116	238	326	325	304	336	398	397	372	243	330	327	306	339 4	400 B	99 3	73	98.0	98.8	99.4	99.6	99.0	99.6	99.6	99.7	0.3	0.2
5201 Park Ln @ US-89 SB Ramps	S	EB	B	D	10.8	18.8	19.1	12.3	18.9	42.2	46.4	29.6	145	234	229	167	391	547	516	414	755	1017	1021	957	1620	1834	1807	1775	759	1030	1018	554	1011 1				99.5	98.8	100.3	100.3	98.5	94.6	93.4	98.1	0.2	3.5
		WB SB	B		11.3 29.7	14.0 73.3	14.5 189.5	12.0 70.8					89 599	99 1844	108 1969	89 1809	107 313	107 607	100 694	98 337	458 910	614 1212	618 1227	573 1159	928 997	1090 1199	1117 1178	1036 1112	457 921	620 1250	613 1236						100.4 98.8	99.0 96.9	100.7 99.4	99.9 100.2	98.6 98.8	98.2 100.8		100.1 100.1	0.0 0.8	0.4
		IN	F	D	20.1	43.7	97.2	41.0	22.0	34.5	36.2	27.0			1505	1005	515	007	004			1212	1227						521	1250	1250	-			-											
5202 Park Ln @ US-89 NB Ramps	S	EB WB	AB	B	9.3 15.8	8.6 16.5	8.0 16.8	8.9 16.1	9.1 23.1				134 113	159 137	138 124	139 124	236 197	302 247	296 247	255 201	672 324	895 434	898 440	847 406	1671 743	1899 885	1901 900	1844 833	678 324	920 440	910 435						99.1 99.9	97.4 98.8	98.7 101.3	99.4 99.8	98.1 98.5	94.5 99.4	94.8 101.5	98.3 100.3	0.8 0.0	3.2 0.0
		NB	D	D	46.7	45.1	45.5	45.2	42.8	43.8	43.0	43.0	125	149	135	126	239	299	289	241	182	252	248	231	575	699	681	645	185	250	247				88 6		98.4	100.9	100.5	99.9	98.4	101.4		100.2	0.0	0.1
5203 Park Ln @ I-15 SB Ramps	s	EB EB	B	C D	15.5 18.8	15.3 24.9	15.1 25.0	15.0 21.1				17.3 37.3	119	153	154	139	250	1157	1157	1162	956	1284	1281	1202	1746	2018	2056	1931	958	1300	1285	1204	1755 2	070 2	065 19	932	99.8	98.8	99.7	99.9	99.5	97.5	99.6	100.0	0.3	0.8
		WB	В		11.6	12.3	12.8	12.0		5.5	5.6	6.0	207	254	274	215	161	170	171	168	937	1258	1288	1198	1455	1689	1713	1614	951	1290	1275				726 16	615	98.6	97.5	101.0	100.3	99.2	97.6	99.2	100.0	0.4	0.8
		SB IN	D C		37.5 21.2	36.6 23.4	35.9 23.2	37.1 21.8					275	323	340	268	1097	2611	2634	2605	662	929	907	851	948	1041	979	1010	678	920	910	852	992 1	170 1	167 10	092	97.7	101.0	99.7	99.9	95.5	88.9	83.8	92.5	0.2	6.9
5211 W State St @ 200 W	S	EB WB	C		12.6 13.7	21.0 17.1	19.1 16.9	12.4 13.5	10.1			17.5 33.2	178 145	273 584	257 441	178 135	313 731	552 1099	581 1107	484 1092	447 277	614 378	599 377	563 352	679 556	793 656	798 646	755 616	450 280	610 380	603 376		0,5 0				99.5 99.0	100.7 99.6	99.4 100.4	99.8 100.0	100.0 99.3	99.2 99.3	100.0 98.1	101.1 99.9	0.1 0.1	0.0
		NB	В		12.8	16.4	16.9	12.8					145	254	234	165	231	359	321	221	388	527	526	490	528	615	600	588	391	530	524						99.0 99.3	99.8 99.4	100.4	99.8	98.9	99.5		100.1		1.0
		SB IN	B	D	11.4 12.9	14.2 18.4	13.2 17.6	12.8 12.8					36	40	39	24	0	0	0	0	22	28	28	26	8	8	8	8	22	30	30	28	9	10	10	9 1	101.6	92.7	92.9	91.9	92.5	79.0	81.0	85.7	0.6	1.0
5212 Park Ln @ I-15 NB Ramps	S	EB	A	C	8.5	7.9	8.0	8.2	13.5	22.4	24.3	19.2	155	197	184	183	468	515	507	509	991	1334	1331	1251	2025	2301	2304	2220	1084	1470	1454						91.4	90.7	91.6	91.9	94.8	91.3	91.7	94.4	6.4	7.0
		WB NB	B		13.5 46.2	16.7 46.4	17.0 45.6	14.6 44.0				11.0 189.8	190 237	263 286	278 301	208 215	241 471	551 1650	360 2153	256 2145	871 193	1160 272	1171 267	1101 250	1309 436	1537 511	1553 513	1456 495	752 200	1020 270	1008 267							113.7 100.9	116.1 100.2	116.6 100.1	104.4 97.1	103.8 96.5		105.4 100.2	9.1 0.1	3.5 1.0
		IN	В	D	13.5	14.7	14.8	13.6	16.8	32.2	42.8	31.8								_																							-			
5270 US-89 @ 1000 N	S	EB WB	D C		31.8 26.8	35.8 28.2	41.7 30.6	32.8 27.2					40 119	42 151	43 155	42 127	45 221	58 432	58 1236	43 1234	22 147	28 195	28 198	26 183	24 220	28 254	27 249	27 239	22 147	30 200	30 198						97.5 100.3	94.5 97.3	94.5 100.1	93.7 99.1	90.3 99.5	94.3 97.5	91.3 96.0	95.2 98.4	0.5 0.2	0.8 0.7
		NB SB	B		8.8 8.0	10.9 19.8	11.9 71.1	9.6 20.2	5.3 9.5			6.1 163.8	122 319	155 1478	157 2644	128 2247	161 224	198 493	196 2636	185 2645	422 1198	582 1596	579 1588	542 1508	1453 986	1537 1157	1519 1091	1481 1061	435 1202	590 1630	583 1611						97.2 99.7	98.6 97.9	99.2 98.5	99.3 100.0	94.6 99.4	84.9 98.9		87.7 97.2	0.6 0.8	10.6 1.9
		IN	D	F	10.0	19.8 18.5	53.0	20.2 18.5					519	1478	2044	2247	224	495	2030	2045	1198	1290	1299	1508	900	1157	1091	1001	1202	1020	1011	1509	992 1	170 1	10/ 10	J92	99.7	97.9	96.5	100.0	99.4	98.9	95.5	97.2	0.8	1.9
53461 2600 S @ 800 W	S	EB WB	AB	B	6.1 11.4	7.8 14.1	7.7 13.4	6.4 11.1	7.5 7.0			9.7 7.4	108 283	143 354	150 372	122 323	179 218	255 228	269 312	187 587	391 495	552 625	542 646	510 613	698 661	822 737	829 715	786 714	405 494	550 670	545 663						96.6 100.3	100.5 93.3	99.6 97.4	100.1 98.8	98.0 98.7	97.8 93.3	98.9 90.7	100.3 96.9	0.3 1.4	0.7 2.9
		SB	c	E	31.1	31.3	32.0	31.2	36.6	41.3	58.9	40.9	291	329	338	288	273	342	495	526	497	682	682	637	516	615	614	578	509	690	682				19 5		97.7	98.9	100.1	99.8	98.0	99.2	99.3	99.9	0.4	0.4
53462 800 W @ I-15 SB Off Ramp	s	IN WB	B	C B	17.0 9.5	18.5 11.0	18.6 10.9	16.9 10.1	15.4				134	148	166	129	144	142	168	3030	341	465	466	435	361	428	427	401	347	470	465	435	365 4	130 4	29 4	01	98.3	99.0	100.3	99.9	99.2	99.5	99.5	99.8	0.2	0.2
	-	NB	в		9.5	10.7	10.8	9.9	10.1	11.5	12.7	9.8	66	86	86	78	197	241	240	197	87	115	119	111	367	414	403	400	88	120	119	111	373 4	40 4	39 4	11	98.5	95.8	100.1	100.2	98.4	94.1	91.8	97.4	0.3	1.9
		SB IN	BB		11.4 10.1	12.4 11.3	12.2 11.2	11.5 10.5					117	143	133	115	126	132	150	531	174	238	240	222	201	239	239	224	177	240	237	222	203 2	240 2	40 2	24	98.3	99.0	101.0	99.7	99.1	99.7	99.8	99.9	0.1	0.1
5347 2600 S @ I-15 NB Ramps	S	EB	D		44.6 9.8	44.4 14.3	45.1 13.5	44.7 11.4	10.5			64.6 11.7	218 257	292 339	301 369	238 280	450 281	485 341	502 461	469 1757	434 1507	612 1967	619 1965	575 1907	789 1632	927 1894	936 1888	888 1812	457 1541	620 2090	613 2066				48 8 955 18		95.1 97.8	98.7 94.1	101.0 95.1	100.1 98.5	97.9 98.2	97.5 96.6		100.2 99.0	0.5 3.3	0.8
		WB NB	С	F	20.8	23.1	23.5	21.0	20.6	193.	3 339.7	272.0	157	339 228	213	280 169	281 382	341 4018	461 4049	4051	700	1967 956	1965 949	1907 889	1632 1288	1894 1290	1888 1197	1812 1298	1541 707	2090 960	2066 949						97.8 98.9	94.1 99.5	95.1 100.0	98.5 100.0	98.2 99.3	96.6 84.3	96.6 78.5	99.0 90.9	3.3 0.2	2.1 9.6
5348 2600 S @ Wildcat Way	5	IN EB	В	F	18.4 16.0	21.9 19.2	21.7 18.7	19.2		011		117.2 69.2	200	340	289	259	424	467	468	465	768	1077	1082	1008	1620	1727	1674	1719	803	1090	1078	1009	1662 1	960 1	955 18	829	95.6	98.8	100.5	99.9	97.5	88.1	85.6	94.0	0.7	7.9
2000 2 WIIULdL Wdy	3	WB	с		16.1	22.7	23.7	18.6	23.6	30.5	28.9	27.8	413	550	546	464	383	481	492	927	1449	1875	1868	1823	1261	1451	1444	1391	1474	2000	1977	1851	1280 1	510 1	506 14	409	98.3	93.7	94.5	98.4	98.5	96.1	95.8	98.7	3.4	2.1
		NB SB	D		40.5 29.5	37.9 31.2	39.8 31.7	39.0 30.3					129 132	172 177	161 187	139 166	509 221	533 300	535 327	533 1203	167 194	228 267	226 271	213 250	305 338	345 400	360 397	346 372	169 199	230 270	228 267				69 3 99 3		98.8 97.6	99.3 98.8	99.2 101.4	100.2 100.2	97.5 99.6	93.2 99.9	97.7 99.4	100.3 99.7	0.2 0.1	1.1 0.1
		IN	c	-	18.6	23.3	23.8	20.8	26.3	58.1	64.3	55.5						550	527			207	-/1	250							207	200						50.0	101.7	100.2	55.0					
5349 2600 S @ US-89	S	EB WB	DE	F	43.7 48.2	49.9 58.6	49.1 58.9	49.2 54.6				127.3 60.7	348 495	428 736	444 721	372 503	835 438	1288 527	1290 589	1283 1480	672 818	934 1116	944 1102	878 1036	1355 737	1443 860	1415 874	1442 811	700 825	950 1120	939 1107	879 1037	1408 1 737 8	660 1 370 8			96.0 99.2	98.3 99.7	100.6 99.5	99.9 99.9	96.3 100.0	86.9 98.9	85.4 100.7	93.1 99.9	0.7 0.3	8.0 0.1
		NB	F	F	39.1	190.9	618.1	577.0	47.6	189.	3 341.0	285.3	370	1869	1989	1986	605	1966	2002	2001	511	632	592	631	1182	1286	1171	1274	531	720	712	667	1204 1	420 1	417 13	325	96.4	87.8	83.2	94.6	98.2	90.6	82.6	96.1	5.3	6.3
		SB IN	F				294.8 208.4		35.7 51.6				611	1912	1957	1933	310	525	529	1908	978	1246	1274	1264	1121	1340	1340	1255	1002	1360	1345	1259	1136 1	340 1	337 12	251	97.5	91.6	94.8	100.4	98.7	100.0	100.3	100.4	2.9	0.1

Image: And series Image: And series Image: And series <				Worst	Case LOS	1			De	alay (Sec)				1		95th	Percentile	Queue (Fe	et)		I				Volume S	Served			I				Volume Der	nand			I				Percent	Served			L	GEH	
	Int # Intersection Name	Control	Approach			6:00	7:00	8:00			16:00	17:00	18:00	6:00	7:00					17:00	18:00	6:00	7:00	8:00			16:00	17:00	18:00	6:00	7:00	8:00	9:00	5:00 1	6:00 1	7:00	18:00	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	AM	PM
	5350 500 S @ I-15 DDI	S	EB	С	E	29.8	23.5	22.7	28.2	39.9	62.8	61.8	57.2	254	296	265	264	426	452	455	449	780	1054	1039	979	1820	2013	2074	2025	781	1061	1048	981	1883 2	220 2	215	2072	99.9	99.4	99.1	99.7	96.7	90.7	93.6	97.7	0.3	5.1
i j j j j j j j <			WB	С	D	10.1	20.4	19.7	11.4	22.5	27.7	36.8	28.7	434	943	792	433	483	663	1057				2176							2150	2125	1990	1670 1	970 1				98.7	102.4	100.2	96.6	88.5	88.5	95.0	0.1	7.1
A A V V V V V V V V V			NB	С	E	19.6	30.6	31.1	21.5	19.9	40.3	59.7	29.8	131	194	211	150	465	3981	3985	3984	514	706	700	656	734	863	864	813	523	710	702	657	737 8	370 8	368	812	98.3	99.5	99.7	99.8	99.6	99.2	99.6	100.1	0.3	0.2
IDE Prain-OP 20 Mary I I C I C I C I C I C I C I C I C I C C C C <				С	F									235	328	352	244	730	3512	3523	3520	523	717	714	667	617	586	633	629	531	720	712	667	636 7	750 7	748	700	98.5	99.6	100.3	100.1	96.9	78.2	84.6	89.9	0.2	7.2
b b b			IN	С	F	19.0	24.9	24.4	19.7	29.4	74.5	95.7	84.0																																		
i i i i i i i i i <	5352 Parrish Ln @ I-15 SB Ramps	S			F			34.4	30.6	36.6																																					
A A A B B B B B <				1	D																																										
				F	F									380	3436	3437	3438	238	2995	3436	3434	670	794	798	799	633	712	728	708	692	940	929	870	644 7	760 7	758	709	96.8	84.5	85.9	91.9	98.2	93.7	96.1	99.9	6.5	1.7
				F	F																																										
H H H H H H H H H H H H H H H H H H H H H H H H H H <	5353 Parrish Ln @ I-15 NB Ramps	S			D									1																																	
H I J J J J J <					С																																										
Image defining energy 1 0 0 0 0 0					F									157	196	191	167	752	3882	3883	3883	552	754	752	703	1215	1192	1195	1269	560	760	752	704	1255 1	480 1	476	1381	98.5	99.3	100.1	100.0	96.8	80.5	81.0	91.9	0.3	10.0
Hole A C C C C C					E																																										
N C C C C C <	5354 Parrish Ln @ Marketplace Dr	5		1	E																																										
H K K K K K K K <																																															
Name Name Name Name Na				1	-									1		107																527															
Base Part Mart V = V A A A A A A A A A A A B C A A A A B B C A A A B C A A A A A A B B B B				1										83	92	95	87	112	133	135	117	197	268	270	250	231	279	279	261	199	270	267	250	237 2	280 2	280	261	98.8	99.3	101.1	100.0	97.5	99.8	99.9	100.0	0.0	0.2
					D	-			-							100			65.0					050			1000						0.05				1500			05.0							
N C L A A A A A A B	5355 Parrish Lh @ 400 W	5			E																																										
N N N N N N N N N N N N N N N N N N N N N N N N N N N N N N					0																																										
b b					E C																											527															
S30 U+HB @ Gge-Mage/mage/m S C C C					-									107	150	120	97	190	526	322	252	260	369	300	301	455	223	552	505	200	590	202	201	456 3	540 5	59	504	99.4	99.8	100.0	99.9	99.0	99.8	96.6	99.8	0.1	0.5
		6		р г				14.7	11.7				-	105	261	250	209	117	124	46	26	124	165	100	156	70	00	21	41	125	170	169	157	77	00	00	04	00.0	07.1	100.1	00.0	00.2	07.0	22.0	49 C	0.2	6.0
Image: Normal problem Image: Normal problem <	5558 US-89 @ Eagle Ridge DI	3			c c			99.4	40.7																	70								(0) .													
H A B					c c												110		207																												
N C				1	с р																																										
State State <th< th=""><th></th><th></th><th></th><th>Č</th><th>c b</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>2/8</th><th>393</th><th>362</th><th>507</th><th>109</th><th>207</th><th>190</th><th>130</th><th>000</th><th>1149</th><th>1155</th><th>10/0</th><th>910</th><th>1092</th><th>10//</th><th>1019</th><th>600</th><th>1100</th><th>1147</th><th>1074</th><th>924 1</th><th>090 1</th><th>066</th><th>1017</th><th>98.0</th><th>99.1</th><th>100.8</th><th>100.2</th><th>99.1</th><th>100.2</th><th>99.0</th><th>100.1</th><th>0.5</th><th>0.5</th></th<>				Č	c b									2/8	393	362	507	109	207	190	130	000	1149	1155	10/0	910	1092	10//	1019	600	1100	1147	1074	924 1	090 1	066	1017	98.0	99.1	100.8	100.2	99.1	100.2	99.0	100.1	0.5	0.5
Image: First series	5359 Center St @ 115-89	s			<u> </u>		-	20.5	20.7					1/18	216	100	166	272	300	307	2/13	244	3/12	347	323	121	505	196	473	258	350	346	324	/32	10 5	509	476	94.8	97.9	100.2	99.7	08.1	99.1	97.4	00.3	0.6	0.7
Pictor Pictor Pictor Pictor Pictor Pictor	5555 Center St @ 05-05	5		Ċ	ć			26.1	20.5															• · ·								247															
N I N V V V V V V V V V V V V V V V V V V V <th></th> <th></th> <th></th> <th></th> <th>ć</th> <th></th> <th>140</th> <th></th> <th></th> <th>101</th> <th></th>					ć												140			101																											
1 1				-	R												196				170		088									978	916														
58 58 68 6 6 5 75 <th></th> <th></th> <th></th> <th>B</th> <th>Č</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>1.54</th> <th>254</th> <th>2//</th> <th>150</th> <th>105</th> <th>210</th> <th>210</th> <th>1/5</th> <th>720</th> <th>500</th> <th>577</th> <th>515</th> <th>052</th> <th>015</th> <th>010</th> <th>/00</th> <th>750</th> <th>550</th> <th>570</th> <th>510</th> <th>000 0</th> <th>,20 0</th> <th>,10</th> <th>/05</th> <th>55.7</th> <th>55.0</th> <th>55.5</th> <th>55.5</th> <th>55.5</th> <th>55.0</th> <th>100.0</th> <th>100.2</th> <th>0.1</th> <th>0.1</th>				B	Č									1.54	254	2//	150	105	210	210	1/5	720	500	577	515	052	015	010	/00	750	550	570	510	000 0	,20 0	,10	/05	55.7	55.0	55.5	55.5	55.5	55.0	100.0	100.2	0.1	0.1
P - P - P - P - P - P - P - P - P - P -	5362 500 S @ US-89	s		B	F									151	214	240	177	956	1440	1453	1439	649	931	919	857	1363	1545	1566	1519	678	920	909	852	1425 1	680 1	676	1568	95.7	101.3	101.0	100.6	95.6	92.0	93.5	96.9	0.1	45
Image: First or condition First or condit	5562 5665 8 65 65	5		-	F												355																														
h c F 237 238 76 237 238 238 238 130 130 130 <				1	F										540	585	212																														
N C F LS 2.0 6.0 7.0 <					F																		1285																								
581 400 N @ US-98 5 E8 C E 2 2 2 2 1 0 9 1 0 9 1 0 1 0 9 9 9 9 <			IN	c	F		28.9	29.5																																							
	5363 400 N @ US-89	S	EB	С	E	24.8	27.8	27.3	25.1	41.7				172	213	203	170	926	1207	1206	1041	516	694	692	652	1205	1410	1387	1290	523	710	702	657	1221 1	440 1	436	1344	98.5	97.8	98.6	99.3	98.7	97.9	96.6	96.0	0.7	2.0
k k			WB	D	F	31.2	43.2	43.2	32.1	98.5	417.6	488.7	655.0	361	586	582	410	638	1763	1788	1793	724	977	976	916	844	848	827	827	730	990	978	916	898 1	060 1	057	989	99.2	98.6	99.7	100.0	93.9	80.0	78.3	83.6	0.4	10.8
n n			NB	с	F		24.5								139	137	109	2079	2802	2824	2824	325	453	443	416	1436	1474			332	450	445	416	1518 1	790 1				100.7	99.7	99.8	94.6	82.3				
5 6.8 6 C 13.6 16.9			SB	F	F	22.7	74.6	145.8	62.4	51.5	138.1	215.6		484	1716	1751	1704	558	1726	1760	1758	1174	1558	1611	1518	1009	1176	1118	1101	1201	1630	1612	1509	1034 1	220 1	217	1139	97.8	95.6	100.0	100.6	97.7	96.3	91.9			
N C C C S1 21.3 21.1 7.5 23.5 23.6 25.6 7.6 7.2 7.6 6.80 7.6 7.2 7.6 6.90 7.5 7.60 7.51 7.03 7.12 8.00 9.5 9.6 9.5 9.5 9.7 9.5			IN	F	F	25.3	51.3	82.4	43.4	68.0	192.0	223.2	281.4																																		
Image: brance	5389 Parrish Ln @ 1250 W	S	EB	В	С	13.6	16.9	16.9	15.2	21.4	21.7	26.5	25.2	167	188	206	178	126	149	154	128	627	808	811	790	598	710	706	661	649	880	870	815	602 7	710 7	708	663	96.8	91.9	93.2	97.0	99.3	100.0	99.7	99.7	3.1	0.2
Image: First series of the series o			WB	С	С	15.1	21.3	21.1	17.5	23.5	23.6	25.6	20.5	167	223	198	187	274	274	277	269	541	727	716	689	694	762	742	754	560	760	751	703	712 8	340 8	338	784	96.6	95.6	95.4	98.0	97.5	90.7	88.5	96.2	1.9	4.0
N C D 170 247 245 94 36 92 93 94 95 94 94 95 94 94 95 95 95 95 <th></th> <th></th> <th>NB</th> <th>С</th> <th>F</th> <th>21.2</th> <th>33.4</th> <th>34.5</th> <th>23.6</th> <th>87.1</th> <th>140.3</th> <th>130.7</th> <th>95.4</th> <th>157</th> <th>294</th> <th>303</th> <th>156</th> <th>307</th> <th>307</th> <th>307</th> <th>307</th> <th>319</th> <th>436</th> <th>440</th> <th>408</th> <th>486</th> <th>316</th> <th>361</th> <th>386</th> <th>325</th> <th>440</th> <th>435</th> <th>407</th> <th>704 8</th> <th>330 8</th> <th>328</th> <th>775</th> <th>98.2</th> <th>99.1</th> <th>101.2</th> <th>100.2</th> <th>69.1</th> <th>38.1</th> <th>43.6</th> <th>49.8</th> <th>0.1</th> <th>32.8</th>			NB	С	F	21.2	33.4	34.5	23.6	87.1	140.3	130.7	95.4	157	294	303	156	307	307	307	307	319	436	440	408	486	316	361	386	325	440	435	407	704 8	330 8	328	775	98.2	99.1	101.2	100.2	69.1	38.1	43.6	49.8	0.1	32.8
5853 W State St @ 650 W 5 EB 6 C 0.1 <t< th=""><th></th><th></th><th>SB</th><th>D</th><th>D</th><th>22.7</th><th>36.3</th><th>33.9</th><th>27.7</th><th>20.6</th><th>23.4</th><th>37.3</th><th>39.2</th><th>184</th><th>336</th><th>261</th><th>191</th><th>372</th><th>384</th><th>387</th><th>387</th><th>319</th><th>435</th><th>441</th><th>407</th><th>699</th><th>827</th><th>767</th><th>766</th><th>324</th><th>440</th><th>435</th><th>407</th><th>704 8</th><th>330 8</th><th>328</th><th>775</th><th>98.6</th><th>98.8</th><th>101.2</th><th>100.0</th><th>99.3</th><th>99.6</th><th>92.6</th><th>99.0</th><th>0.1</th><th>1.4</th></t<>			SB	D	D	22.7	36.3	33.9	27.7	20.6	23.4	37.3	39.2	184	336	261	191	372	384	387	387	319	435	441	407	699	827	767	766	324	440	435	407	704 8	330 8	328	775	98.6	98.8	101.2	100.0	99.3	99.6	92.6	99.0	0.1	1.4
WB B C 10.5 14.0 13.3 11.7 15.7 19.6 20.1 16.7 13.0 16.7 <th></th> <th></th> <th>IN</th> <th>С</th> <th>D</th> <th>17.0</th> <th>24.7</th> <th>24.5</th> <th>19.4</th> <th>34.4</th> <th>35.6</th> <th>42.0</th> <th>39.9</th> <th></th>			IN	С	D	17.0	24.7	24.5	19.4	34.4	35.6	42.0	39.9																																		
NB B C 10.3 12.7 13.4 10.8 21.5 20.0 28.5 21.6 69.9 99.9 20.2 28.5 21.6 20.5 21.6 <th>5853 W State St @ 650 W</th> <th>S</th> <th></th> <th>-</th> <th>С</th> <th></th> <th>834</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>890</th> <th>833</th> <th></th>	5853 W State St @ 650 W	S		-	С																				834							890	833														
Image: First and the state				В	С		14.0	13.3	11.7	15.7	19.6	20.1	16.7	130	181	175	133		1074					459		793					470	465	435	805 9					98.0		98.8	98.5	97.4	97.6			1.0
IN B C 9.5 1.2 1.0 1.5 1.1 2.3 1.3				В	С		12.7	13.4	10.8	21.5	26.0				93	90	82	202	266	277	221		287	290	269	398					290	287	269	399 4													
5857 W Glovers In @ 650 W 5 EB C C 17.7 30.1 31.4 18.4 21.6 27.8 27.0 18.6 294 806 736 547 710 732 685 373 440 439 411 99.1 98.5 100.5 99.9 99.4 99.2 99.8 99.6 0.3 0.2 WB C D 15.0 20.0 23.3 31.0 23.1 110 155 160 16 128 194 195 178 201 277 278 260 468 545 541 509 206 280 277 259 444 570 568 532 97.0 98.8 98.6 95.6 95.7 0.1 2.0 MB C C 22.7 26.4 28.4 27.6 28.6 545 541 509 206 28.6 532 97.6 98.0 100.5 96.8 95.6 95.7 0.1 20.6 28.7 28.7 28.7 28.7 28.7 28.6					-									24	42	41	24	35	42	40	39	29	40	40	36	42	48	48	45	30	40	40	37	43	50	50	47	98.0	99.7	99.8	96.6	97.7	95.5	95.0	96.8	0.2	0.5
WB C D 15.0 20.0 20.3 15.9 24.9 35.3 31.0 23.1 110 155 160 16 21.0 175 176 21.0 175 26.0 176 21.0 21.0 15.0 21.0 15.0 160 115 160 16 21.0 175 176 21.0 175 26.0 46.8 54.5 54.0 50.0 25.0 57.0 56.0 53.0 97.0 90.0 10.0.0 96.8 95.0 97.0 <t< th=""><th></th><th></th><th></th><th>В</th><th>с</th><th>5.5</th><th></th><th></th><th>1010</th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>				В	с	5.5			1010				-																																		
NB C 22.7 26.4 28.4 24.4 26.4 30.1 29.6 24.9 88 115 113 90 257 347 29.8 15 139 10 105 140 190 188 16 16 190 188 16 16 18 16 190 188 16 16 190 180 16 190 188 16 16 16 100	5857 W Glovers Ln @ 650 W	S		с	с																				684																						
SB C C 24.5 29.1 29.8 25.9 28.1 30.2 30.2 26.1 116 145 139 110 107 115 113 105 214 287 289 269 194 227 229 214 214 290 287 269 195 230 230 215 100.2 99.1 100.5 100.0 99.7 98.6 99.7 98.6 99.7 98.8 0.0 0.2				1	D									1			116																														
					-																																										
IN C C 19.2 27.5 28.6 20.2 25.0 31.2 29.5 23.0				С										116	145	139	110	107	115	113	105	214	287	289	269	194	227	229	214	214	290	287	269	195 2	230 2	230	215	100.2	99.1	100.5	100.0	99.7	98.6	99.7	99.8	0.0	0.2
			IN	С	С	19.2	27.5	28.6	20.2	25.0	31.2	29.5	23.0																																		

				Worst	Case LOS	1			Dela	ay (Sec)				1		95t	h Percentil	e Queue (Fe	eet)						Volume	Served							Volume	Demand							Perce	nt Served				1	GEH
Int # Intersect	tion Name	Control	Approach	AM	PM	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	6:00	7:00	8:00	9:00	15:00	16:00	17:00	18:00	AM	PM
7068 900 W @ 1000		S	FB	С	С	14.2	22.9	21.8	15.1	21.7	22.1	22.6	20.4	265	542	488	279	281	328	364	271	550	758	750	704	506	596	610	565	560	760	751	704	509	600	599	560	98.3	99.8	99.8	100.0	99.5	99.3	101.9	100.9	0.2	0.2
			NB	c	F	15.2	30.3	25.9	16.7	69.8	353.9	206.2	118.9	206	416	321	178	1404	1703	1703	1703	401	548	541	510	588	532	792	703	405	550	544	509	627	740	738	691	99.1	99.8	99.5	100.1	93.8	71.9	107.3	101.8	0.2	
			SB	Δ	Δ.	7.5	8.2	86	7.0	8.1	91	9.5	8.2	85	104	110	97	136	162	127	99	233	318	320	300	500	601	367	422	206	280	277	259	475	560	558	522	113.0	113.6	115.3	115.8	105.3	107.3	65.7	80.7	4.5	
			IN	ĉ	F	13.2	22.6	20.6	14.0	35.1	114 1	99.5	66.5		101	110	5,	150	102	127	55	200	510	520	500	500	001	507	122	200	200	2	200	175	500	550	522	115.0	115.0	110.0	115.0	105.5	207.0	05.7	00.7	1.5	5.1
7122 600 N @ 300 W	1	s	FB	- C		20.6	20.0	20.0	29.5	22.8	25.1	26.3	22.2	570	786	783	787	373	380	302	3/18	1010	1208	1214	1228	761	926	880	838	1062	1440	1/12/1	1333	780	920	017	858	95.1	83.0	85.3	92.1	97.6	100.6	95.9	97.6	8.5	1.2
7122 00011 @ 50011		5	WB	Ċ	5	27.2	27.4	20.4	25.5	22.0	57.6	20.5 EE 0	46.0	202	270	252	206	205	102	447	205	210	116	410	200	205	220	227	210	210	420	116	200	200	240	220	217	100 1	00.1	100.9	100 1	00 0	00.6	00.2	100.2	0.0	0.2
			NR	- C	L .	54.5	27.5	1104 3	1052.0	10.0	37.0	177.0	40.0	252	1042	1070	1072	233	455	1044	1000	510	410	415	565	1240	1550	1542	1404	510	420	410	205	1257	1600	1506	1402	100.1	73.1	72.4	01.0	00.4	99.0	55.5 0C 7	100.2	11.2	
			SB	r C	r C	23.5	497.5	27.2	2 1052.8	19.0	26.0	26.1	22.0	202	1945	1976	1975	160	1405	1944	1909	627	220	337	201	1546	1559	1545	494	641	740	752	805	1357	1000	100	1495	94.0	/2./	100.0	01.0	99.4	97.5	90.7	99.4	0.2	
			IN				27.1	27.5	20.1	24.2	20.8	100.2	58.5	202	247	245	201	100	190	190	151	037	605	800	804	5/6	447	447	410	041	870	800	805	362	450	449	420	99.5	99.5	100.0	99.9	99.0	99.4	99.6	99.4	0.2	0.5
7372 600 N @ 400 W	,	6		F	F	29.2	111.3	192.3	194.2	23.1	53.5	100.2	58.5	4070	1020	1055	4004	426	533	400		4504	1000	4000	4040	4070	4540	1434	1272	4666	2200	2225	2002	1200	4520	1517	4440	05.7	02.7	04.5	01.7	00.7	00.0	04.6	06.0	40.0	
7372 600 N @ 400 W	v	5	EB	F	C	28.1	168.2	195.9	160.0	22.4	26.6	25.9	21.8	12/9	1930	1955	1884	436	533	498	444	1594	1892	1889	1919	1272	1519	1434	13/3	1000	2260	2235	2092	1289	1520	151/	1418	95.7	83.7	84.5	91.7	98.7	99.9	94.6	96.8 100 7	10.9	
			WB	C	C	19.5	26.8	25.4	23.1	25.9	33.5	33.2	27.2	285	339	31/	312	410	499	491	426	662	818	812	/96	903	10/1	1070	1024	/00	950	939	8/9	924	1090	1087	1017	94.5	86.1	86.5	90.6	97.7	98.3	98.4	100.7	6.6	0.8
			IND	D	E	34.2	39.9	39.5	37.3	45.4	66.9	64.2	44.9	193	308	263	200	618	853	836	539	363	492	498	462	689	815	816	767	369	500	495	463	695	820	818	765	98.6	98.5	100.7	99.8	99.2	99.4	99.8	100.3	0.2	
			SB	С	F	18.6	22.3	23.1	19.4	33.5	69.5	91.4	60.9	106	138	130	108	355	484	530	519	116	157	157	146	376	442	442	415	118	160	159	148	382	450	449	420	98.6	97.9	99.1	98.7	98.5	98.2	98.4	98.7	0.3	0.6
			IN	F	D	26.4	108.1	123.2	107.8	29.6	42.0	44.0	32.9																																		
7501 Beck St @ N Ch	nicago St	S	EB	D	С	36.1	35.6	36.4	36.0	29.3	31.7	31.2	30.3	95	103	108	89	144	186	201	147	66	91	88	84	201	239	229	216	67	90	90	83	203	240	240	224	99.1	101.7	98.8	101.1	99.2	99.4	95.7	96.6	0.0	
			NB	В	В	10.8	14.1	14.4	11.9	9.9	11.6	11.2	9.3	127	182	177	141	258	298	287	236	590	806	800	749	1398	1642	1705	1561	597	810	801	750	1400	1650	1646	1540	98.8	99.5	99.8	99.8	99.9	99.5	103.6	101.4	0.3	
			SB	В	A	10.0	13.7	13.8	11.0	8.4	9.6	9.5	7.9	285	417	405	282	129	150	127	102	1526	2100	2101	1965	654	768	594	612	1562	2120	2096	1963	662	780	778	728	97.7	99.1	100.2	100.1	98.9	98.4	76.4	84.1	0.6	6.0
			IN	В	В	11.6	15.0	15.2	12.7	11.7	13.3	13.1	11.4																																		
7619 600 N @ I-15 SF	PUI	S	EB	D	D	37.5	44.9	44.9	40.8	46.3	50.0	49.3	44.9	196	277	270	211	201	273	250	204	851	1177	1174	1100	806	969	977	909	877	1190	1177	1102	822	970	968	905	97.1	98.9	99.8	99.8	98.0	99.9	101.0	100.4	0.7	0.1
			WB	D	D	29.2	36.5	36.1	32.0	34.4	42.7	41.6	34.2	255	319	313	257	344	568	494	383	1070	1373	1382	1322	1756	2071	2080	1977	1121	1520	1503	1407	1789	2110	2104	1969	95.5	90.3	92.0	93.9	98.2	98.1	98.8	100.4	5.5	1.0
			NB	F	D	31.3	120.1	197.5	110.0	38.7	47.0	43.5	37.7	166	3550	3575	3554	339	552	405	309	1046	1035	953	1120	1122	1330	1125	1126	1054	1430	1414	1324	1128	1330	1327	1241	99.3	72.4	67.4	84.6	99.6	100.0	84.8	90.7	15.6	4.6
			SB	D	С	30.4	36.0	36.1	32.0	30.0	33.4	33.8	30.2	280	357	361	266	231	281	298	220	566	761	764	713	606	719	721	673	568	770	761	713	610	720	718	672	99.7	98.8	100.4	100.0	99.2	99.9	100.4	100.2	0.2	0.0
			IN	D	D	31.7	46.9	53.2	45.5	36.3	42.9	41.6	35.8																																		

Appendix I: Active Transportation and Community I-15 Purpose and Need Scoping Memorandum

Active Transportation & Community I-15 Purpose and Need Scoping Utah Department of Transportation Salt Lake City, Utah

Prepared by Smart Growth America December 2021

Executive Summary

Smart Growth America, in partnership with Horrocks Engineers Inc. (Horrocks), is supporting the Utah Department of Transportation (UDOT) for community-driven scoping of a purpose and need statement for the I-15 Environmental Impact Statement from Farmington to Salt Lake City. This purpose and need statement process is framed under a vision of scoping, promoting, designing, and implementing a project that connects communities and incorporates activity-friendly routes to everyday destinations.

As part of this work, Smart Growth America (SGA), Horrocks, and The Langdon Group developed a public involvement plan to engage key local and regional community stakeholders on the I-15 corridor from Salt Lake City to Farmington. Stakeholders represented various community interests, ranging from active transportation advocates, business interest groups, advocates for marginalized communities, transit agencies, municipal and regional transportation, and economic development officials and staff. The stakeholder engagement focused on a series of community centric workshops, which involved a community walk audit at one of the intersections with I-15 in each community involved. The audits were followed by a virtual roundtable discussion meant to tease out the barriers to multimodal community connectivity as well as the opportunities and aspirations for a reimagined I-15 corridor to facilitate activity-friendly community connections.

From those community roundtable discussions, SGA and Horrocks have synthesized the major points raised regarding the barriers and opportunities for this I-15 project to facilitate community connections and have developed recommendations on how to frame the I-15 National Environmental Policy Act (NEPA) Purpose and Need Statement.

Contextualizing I-15 in the Salt Lake and South Davis County region

The I-15 corridor is a vital mainline highway for the movement of people and goods along the Wasatch Front and of critical importance in the western United States. As the "Crossroads of the West", Salt Lake City and the communities of North Salt Lake, Woods Cross, West Bountiful, Bountiful, Centerville, and Farmington have been intricately shaped by and influenced the development of the I-15 corridor. With the changing demographics land uses, and mobility needs in and around the I-15 corridor, UDOT sought assistance to help scope out solutions for enhancing the I-15 corridor to promote mobility, economic vitality, and foster community connections.

Project Boundaries and Corridor Context

As envisioned by UDOT, the focus of the I-15 NEPA scoping work involves approximately 16 miles of the mainline I-15 corridor, from where I-15 intersects 600 North in Salt Lake City to where the corridor intersects with Shepard Lane in Farmington (project corridor). At both ends of the project corridor, the I-15 mainline consists of one high occupancy vehicle (HOV) lane adjoined with three general purpose travel lanes. Within the project corridor from North Salt Lake through Centerville, the I-15 mainline adds a 4th general purpose travel lane. Vehicular traffic on the I-15 mainline varies by time of day and community context, but traffic volumes range from 4,000 to 9,200 vehicles traversing the corridor per hour at peak periods. With the I-15 mainline serving as a major intercontinental artery between Los Angeles and Calgary plus major distribution centers located within the Salt Lake City region, the I-15 mainline sees quite a variety of vehicular traffic between freight and passenger traffic.

Community Context

The project corridor traverses a unique quilt of communities that comprise part of the Salt Lake region. Starting in the southern portion of the project corridor, in the center of Salt Lake City and the region's core, the project corridor demarcates downtown Salt Lake City, a major quarry and freight rail terminal and its residential neighborhoods of Rose Park and Fairpark. As the project corridor continues north towards Davis County, it traverses through the suburban communities of North Salt Lake, Woods Cross, Bountiful, West Bountiful, Centerville, and Farmington. The topography of the corridor through these communities is a very narrow plain between the Great Salt Lake and the Wasatch Mountains.

The communities along the project corridor north of Salt Lake City were primarily rural communities until the 1950s. Then, rapid development of I-15 and the rest of the US Interstate Highway system, plus the establishment of Hill Air Force Base and the reimagined Lagoon amusement park in Davis County spurred suburbanization of the corridor. This suburbanization changed the demands and context of the project corridor to support bilateral mobility between the major activity centers in Salt Lake City and at Hill Air Force Base. As the communities grew, matured, and established their own local activities in commerce, community identity, and recreation, so did the mobility needs towards fostering multimodal and community connections.

There is varied diversity throughout the project corridor, ranging in income, racial identity, age, and multimodal accessibility. The corridor has a sizable Hispanic population, ranging from 7-25 percent depending on the community. In terms of modal splits, there is varied active transportation use traversing within the

corridor, ranging from 4-13 percent of modal trips by cyclists and 6-17 percent of modal trips by pedestrians. The level of cyclists and pedestrians has increased dramatically in the past few decades and coincides with increasing community growth and enhanced regional transit investments—specifically the opening and subsequent expansions of the Utah Transportation Authority (UTA) FrontRunner commuter rail line. The increasing active transportation demands within the project corridor has raised safety and livability concerns for UDOT and the local communities as it pertains to those travelling outside of cars intermingling with automobile traffic inbound and outbound from I-15.

Connecting Communities: Reimagining the NEPA development process

Increasing mobility demands, aging I-15 infrastructure, a rapidly growing population, and intensifying development within the project corridor has prompted UDOT to start evaluating an approach to maintain a safe, equitable, reliable, and vibrant project corridor into the future. Acknowledging that the status quo process of scoping out the purpose and need for interventions to the project corridor will not meet the

complex community needs, UDOT charged Horrocks and SGA with developing a holistic community-driven feedback process to inform the development of the purpose and need for the project corridor.

A typical process employed by state and local transportation agencies involves planners and engineers, with input from communities in the study area, scoping out the purpose and need of a project by looking at the corridor alone. A study would include identifying community impacts and addressing them. However, it would not consider connections to, over, or under that corridor, much less make that connectivity fundamental to the project. Particularly in a highway project, the needs of drivers would be paramount.

For this project, UDOT wanted to take a new approach and tasked Horrocks and SGA to solicit input from local and regional stakeholders on how I-15 impacts east-west connections across the corridor, particularly for non-drivers. Those stakeholders were engaged to help identify the barriers to connections across I-19 as well as set aspirational goals and a vision for how the project corridor could be better integrated and more functional for the growing multimodal mobility in their communities.

Reconnecting Communities

To gain the perspective and knowledge of the corridor and the context in each community, stakeholders were invited to a community focused walking audit. The walking audit, oriented around the intersection of the project corridor with the community and its local transportation network, focused on the needs of multimodal users of the I-15 crossings and the connection of those crossings into the community. That meant looking at those corridors from the perspective of a pedestrian, bicyclist, and transit rider, as well as how the circulation of vehicles interacted with those outside of a car. Lastly, it provided context of how members of each community can reasonably access jobs and essential services within their community on foot, bike, transit, or in a vehicle with the added context of the intersecting project corridor.

Within 24-48 hours of the respective community walk audits, stakeholders joined a virtual conversation about their experiences on the walk audit, the barriers within their community, and goals as they relate to the project corridor. The virtual conversation was broken into three parts, with the initial portion focused on reengaging and reacting to visuals from the stakeholders' experience on the walk audits. Facilitated breakout group discussions targeted questions pertaining to the role of the project corridor in their personal and professional travel, the impact the project corridor has to mobility and local community development, and key barriers and perceptions from the walk audit that could translate into changes along in the project area. The second portion of the workshop served as a knowledge exchange, highlighting key principles on complete streets design, how such design can interface with major thoroughfares such as the project corridor, and examples of best practices from across the country. The final portion of the workshop was a full stakeholder roundtable discussion on tangible and/or aspirational solutions and goals to the barriers and challenges identified at the beginning of the workshop.

Community Stakeholder Context to the Purpose and Need

From the two-part workshop series with the communities along the project corridor, SGA has synthesized the community stakeholder conversations to contextualize the barriers and aspirations for the project corridor.

Across All Communities

The workshop participants in each of the five communities were eager and enthusiastic to engage in this process. They clearly understood the issues at hand and had many ideas of how to solve them. Many, however, were wary about the extent to which their suggestions would make their way into the final project, especially those who had been told 'no' by UDOT in the past.

Participants often started by discussing both the terrain and the unpleasant nature of the walk audit. They discussed the width of the valley and how that impacted transportation connections as well as the critical transportation infrastructure that serves their community. They framed their discussions based on their experiences in the walk audits they had just completed, which they found to be difficult, unpleasant, and indicative of an unsafe bike and pedestrian experience.

Several <u>key priority</u> areas arose in every group, taking slightly different forms but with consistent themes and conclusions.

- 1. <u>Crossings</u>: All the communities agreed that I-15 crossings needed to have more substantial facilities for bicyclists and pedestrians, but they did not agree across all communities as to whether those facilities needed to be new (or exclusively bike/pedestrian-use) or whether existing facilities should be expanded. Participants in Salt Lake City and Centerville favored new crossings as well as improved existing crossings. Those in Bountiful, West Bountiful, and Farmington mostly preferred improved existing crossings with expanded facilities for bicyclists and pedestrians. North Salt Lake and Woods Cross had opinions on both sides. Worth noting in the communities that support separate crossings is that some participants, especially women, expressed concerns about safety in long active transportation-only crossings due to isolation when using them.
- 2. Lack of transition to community context: A common point of agreement was that as drivers exit I-15 onto local roads, they have few indications that they are entering communities where people are walking, biking, and living. As a result, they barrel into communities as if they are still driving on a highway. Participants up and down I-15 identified the need for exits to indicate to drivers that they are entering a community, using solutions like traffic calming road design, signage, and creative placemaking to match the context of the communities that drivers wish to enter. They suggested these indicators begin on the exit ramps themselves. Additionally, the crossings of I-15 were designed as if they were a part of the Interstate itself and not a connector between two communities. This encouraged drivers to speed up on the crossing and then drive too fast when they returned to a neighborhood on the other side. Participants thought it made more sense for crossing designs to match the context of the communities they are connecting. With long entrance ramps, drivers have plenty of time to get up to highway speed without starting on the crossings near pedestrians.
- 3. <u>Diverging diamonds</u>: Diverging diamonds were described as intimidating to drivers, bicyclists, and pedestrians alike, and avoided by many residents. This flaw seems to be related to the compactness of space available for all users. Participants also did not believe they reduced congestion. Participants desired alternate options.
- 4. <u>Visibility</u>: Pedestrians and bicyclists reported struggling to be visible when crossing I-15. Some underpasses are too dark for pedestrians to feel safe crossing. Some crossings have space for pedestrians, but they might be only on one side and a few end half way across. Some on and off ramps to/from I-15 provide drivers poor or no visibility of pedestrians, especially at the higher speeds encouraged, posing immense safety risks. Further, where bicyclists ought to go is often

impossible to determine. Participants talked about biking far out of their way to find safer crossings or having to walk their bike across if they used the less comfortable ones. Even at low biking speeds, there is limited time to figure out where you belong.

5. <u>Maintenance</u>: Participants who experienced poorly maintained facilities (such as debris-ridden bike lanes) were concerned about UDOT constructing facilities and then leaving the maintenance responsibilities to local governments with limited resources. They sought clear jurisdictional responsibilities and built-in plans for maintenance, including a specific call for UDOT to participate actively.

Several other important issues came up consistently but reached fewer across-the-board conclusions.

- <u>Adjacent roads</u>: Participants appreciated the focus on critical I-15 crossings but emphasized that facilities on adjacent roads could not be ignored if these links were going to be truly functional. If the crossing is great but puts a traveler onto a road with no place for them after crossing I-15, it doesn't help much. They pushed for better facilities and traffic calming on parallel north-south routes through their communities such as US-89. They also saw the need for better bike/pedestrian access to the network of north-south trails like the Legacy Parkway Trail.
- 2. <u>Transit access</u>: UTA's FrontRunner buses provide a critical connection through the region but are often difficult to access by foot or bicycle. This came up frequently, though not explicitly in every engagement. UTA seems to be focusing on improving "on-demand" services (like Uber or Lyft) to connect riders to their service, not necessarily by more effectively connecting people to existing stops. This was not seen as a sufficient solution to participants.
- **3.** <u>Freight Traffic</u>: The substantial presence of heavy industry like the gravel pits and refineries along the I-15 corridor makes trucks ever-present on I-15 and local roads. Participants expressed concern about their presence and sought solutions that would separate truck traffic from communities or at least reduce their speeds.

Salt Lake City

The conversation among participants from Salt Lake City focused on several challenges, starting with the insufficient crossings across I-15. They suggested (1) a new bridge over the railroad at 1800 North; (2) additional facilities for pedestrians and cyclists at 600 North; and (3) additional non-interchange crossings at 400 North or 500 North. The crossing at 600 is wide, high speed, and intimidating outside of a car. Even inside of a car, the crossing is confusing to those unfamiliar with the area. The active transportation route crosses traffic several times with very wide turns that allow drivers to go at high speeds. The crossings are so long that it can be hard for a pedestrian to determine what they are crossing to, especially in dim light. As a bicyclist, there is no way to safely navigate this system unless you walk your bike and there are some parts where the path is a too narrow for a person to walk with a bike. Participants also pointed to an opportunity to tie the crossing at 600 into broader redesigns in the area, namely converting 600 North and 700 North into boulevards and connections to US-89.

In addition to the crossing needs, improvements in connectivity to neighborhoods—including safe transitions off of I-15—are high priorities. The context clues and road designs should communicate to drivers coming off I-15 that they are entering a neighborhood and should adjust their speeds accordingly. Well-designed transition zones should begin on the exits and continue on the crossing itself. Because the crossing is designed more like the highway than the communities it connects, it encourages drivers to speed up to highway speeds just crossing I-15 and then drivers continue at unsafe speeds when they

return to grade level on the other side. Aligning the crossing with the community context will help drivers maintain safe speeds. Linking the pedestrian facilities into the neighborhood paths to create better connectivity for neighborhoods like Guadalupe and Fairpark could also have big impacts.

Another focus of conversation was around quality of life for those living near I-15. The Capitol Hill neighborhood has significant noise issues, and the maintenance of facilities adjacent to I-15 should be improved. There are major opportunities for beautification to create neighborhood pride—things like landscaping, art, and attractive sound barriers could be low cost but high reward for the region and neighborhoods.

Finally, commercial travel to and from the gravel pits continues to be a challenge. Improved maintenance and debris removal on the heavily trafficked roads are needed.

North Salt Lake / Woods Cross

These communities focused on how unsafe it feels to be a pedestrian not only while crossing I-15, but also on US-89. They said that the exits off I-15, particularly the northbound going west on 2600 feels like a race car track with little indication you're entering a community and poor visibility to see pedestrians or other drivers. They shared reports from residents of a nearby trailer park that "it feels safer to jay walk than to cross at the confusing intersection." The group was conclusive in the need for better protected and/or separate bike/pedestrian facilities, better traffic calming design, and exits off I-15 that indicate you are entering a community. Also, I-15 underpasses should have more sufficient lighting, as they are currently quite dark.

Participants brainstormed several alternatives to US-89 for north-south bike/pedestrian travel. One option was creating bike/pedestrian facilities through the local industrial park, as trucks move through there but do so slowly. Another option was taking advantage of the roughly 30 feet of right of way next to the railroad tracks. Others suggested improving US-89.

Participants identified the need to overcome mistrust with UDOT. In the past, UDOT had been a barrier in improving their communities, but said that UDOT could earn their trust again by committing to improving walkability and bikeability through this process.

There was also a conversation about the new rail crossing bridge project, and how it would impact volume on 1100 and 2600 as well as the prospect of accompanying bike/pedestrian facilities.

Bountiful/West Bountiful

The communities of Bountiful and West Bountiful were in agreement that improvements to the existing crossings—at 400 North and 1500 South—are a high priority. There are high traffic volumes and where most pedestrians and bicyclists would prefer to cross, there are concerns about visibility and vehicle speed. North and South travel is lacking for active transportation options. This is evident on US-89 and 200 West, where participants agreed that travel outside of a car is too dangerous. In addition to the I-15 crossings, there is poor connectivity to the trail network, specifically getting to Legacy Parkway Trail from side streets as well as lacking signage. Overall, participants agreed that there are two contexts in their community: comfortable, welcoming town centers, and the connections in-between that are unsafe and car-centric.

Participants suggested decoupling active transportation options from some of the busier roads with the most safety concerns. Rather than trying to fit all users into a limited space, prioritizing different modes on different routes could better support active transportation and safety. This is in line with a discussion about how recreational travel is important to the communities and could serve as an opportunity to begin conversations about improvements. Wayfinding and improvements to create a more welcoming and comfortable environment were the focus of other solutions.

Centerville

More than in other communities, Centerville discussed both its regional economic role and its existing land use, tying them together. Participants noted that most of the economic activity in Centerville comes from pass-through traffic stopping for food or errands. Thus, the massive shopping centers and the services therein are buttressed by I-15 on one side and parking surrounding the rest. Aside from the general lack of bike/walkability to the shopping center, I-15 serves as a significant barrier between relatively dense housing on the west and stores like Walmart and Home Depot on the east. If Centerville wants to keep growing West of I-15, participants emphasized the need for better connectivity, especially for emergency services.

Like in other workshops, the Centerville group pointed to the need for better connectivity to trails like Bonneville Shoreline, Denver and Rio Grande Western Rail Trail, and Legacy Parkway. They said that access points via Pages Lane, Parrish Lane, or Jenny's Lane could help. Relatedly, some participants were involved in the branding of the Legacy Parkway Trail and thought that creative placemaking on I-15 crossings could follow a similar process, involving artists and history groups in the process. Some even suggested that Community Park could feasibly be expanded to cross I-15, creating a bike/pedestrian-friendly green space.

Pedestrian signals were also a main topic of conversation. Participants observed that pedestrian signals were only timed for people that could walk quickly. Many able-bodied people have difficulty crossing in time, let alone people with disabilities or older residents. In addition, sloped crossing bridges, however separated, are difficult to cross for disabled people. They are quite long as well, so places to rest are needed. This is likely true in other communities, but those convenings did not include mobility impaired people and so the conversation did not reach this level of specificity.

Farmington

Much of the focus among Farmington community members was the State Street overpass, as it is the critical connection for bikes and pedestrians to cross I-15, including Farmington Junior High School one block away. Residents often face unbearable noise from I-15, insufficient lighting, and steep climbs. Many participants requested expansion and improvements of the overpass. There is a crossing on the north side available only halfway across. If you pick that sidewalk, you have to cross in the middle of traffic going at high speed or walk all the way back down, cross and start over. Participants also noted the need to improve other nearby I-15 crossings such as Shepherd Lane, Glovers Lane, and Park Lane.

They identified a need for the expansion of bike/pedestrian facilities on Shepherd Lane and Glovers Lane, as they are currently too narrow. They saw existing projects at the Park Lane crossing as an opportunity for creative placemaking, including culturally significant art. UDOT representatives noted that the Governor's quality of life initiatives could open up funding for these kinds of projects.

Lagoon, the city's large amusement park, was a main topic of discussion. Participants highlighted that many of the park's employees are minors who are unable to drive and need safe ways to get to and from work. Currently, they do not have a safe way to cross I-15. Even if they do cross, the service road entrance has no space for pedestrians and also has high speed vehicle traffic. Also, residents said that the great trail networks near Farmington are difficult to access without a car. To solve this issue, they prescribed a better network of bike/pedestrian facilities as well as better wayfinding resources so bicyclists and pedestrians can get to trailheads.

Next Steps

The project corridor as currently designed, and operating is focused on regional north-south traffic to the detriment of east-west and local travel. It can be challenging for drivers, but it is extremely dangerous at most crossings for those outside of a car. This project corridor environment is prompting UDOT to look at solutions to mitigate these challenges. This opportunity to reimagine I-15 would allow UDOT and David County to design I-15 in a way that not only addresses regional travel needs but also integrates within the communities it traverses to improve local connections.

Observations on Barriers and User Perceptions

Through community walk audits, UDOT and community stakeholders highlighted key observations to help identify barriers and user perceptions. Heard frequently, stakeholders highlighted the hostile street environment for pedestrians and cyclists looking to traverse across the project corridor within their community. This takes on an additional level of hostility for persons with limited mobility or other mobility disabilities looking to travel the streets that cross the project corridor. This hostility towards pedestrians and cyclists stems from a street design that emphasizes motor vehicle speed and prioritizes the context of the project corridor over the community that it serves. Even within the street design, stakeholders observed that the design is so complex and oversized, that motor vehicle operators are also overwhelmed and unsure what to expect on the roadway while traversing across or transitioning into or out of the project corridor.

Delving into the barriers that were observed during the community walk audits and subsequent workshop discussions, key themes emerged that UDOT will need to consider in mitigating in subsequent design and engineering considerations of a reimagined project corridor. The hostility in street design for pedestrians and cyclists stemmed from either absent or inadequate sidewalks and paths incorporated adjacent to the street or on a dedicated parallel facility. Even when there were pedestrian and cyclist accommodations, inconsistent maintenance left facilities in a state of disrepair or creating unsafe perceptions, making it unreliable for use. Another challenge raised by stakeholders referred to visibility challenges for the pedestrian and cyclist facilities and how they are incorporated and circulate within the street design. Whether by signs, overgrowth, limited or no lighting, or other obstruction, the pedestrian and cyclist facility intersections across the streets crossing the project corridor had vehicle lines of sight impeded, creating a lack of consistent expectation for pedestrians and cyclists by vehicles. Additionally, stakeholders noted the incumbent street design across the corridor lacked local context and emphasized speed over user experience. Stakeholders noted how in their walk audit, vehicle operators are not prompted by the street design to slow down as they exit the project corridor into their community, risking the safety of other vehicles, pedestrians, and cyclists. Furthermore, diverging diamonds on several project corridor crossings, designed to reduce turning conflicts, create a lack of user experience consistency for all users alike, increases congestion, and exposes pedestrians and cyclists to higher speed vehicles.

Stakeholder Perspective on the Project Corridor's Purpose and Need

In thinking about an improved project corridor, stakeholders had vibrant perspectives on how to conceptualize design and future corridor operations. Even within the diverse ideas, common themes on goals and opportunities did emerge from stakeholder workshops.

Emphasized heavily as a barrier, stakeholders were adamant that any project corridor design has to address community context. Within some communities, there is a desire to incorporate traffic calming and redesigning streetscape crossings on the project corridor that are scaled to the community and its diverse users. Delving further into streetscape design, stakeholders are looking for design that improves the user experience via noise reduction, street operations cognizant of all users (accessibility for mobility impaired, user appropriate crossing signal timing) and destination making via streetscape beautification (art, landscaping, wayfinding). Stakeholders in several communities highlighted it may not be possible to incorporate all modes of transportation on each project corridor crossing, thus are flexible in various communities to look at modal priorities by crossing, so there are reliable, safe, and attractive modal crossing options for all users.

A final thematic issue that emerged in stakeholder discussions was the relationship that communities have with UDOT. Several communities expressed a history of distrust and lowered expectations of UDOT due to obstructive guidance or not following through on various community asks. With this project corridor, UDOT has laid a stake in the ground in resetting their relationship with the communities in the project corridor. There are also opportunities for UDOT and the communities to not only conceptualize the purpose and need of the coordination on the maintenance of the project corridor and street crossings. Additionally, UDOT can build goodwill with the communities by facilitating information and tools access for communities to better understand the multimodal operations of their transportation network and how it interfaces with the project corridor (to advocate for local, regional, and state resources for their respective transportation system).

Looking ahead, the information provided in this memorandum serves as a tool for UDOT, a synthesized compendium of stakeholder thoughts on the barriers and opportunities on the project corridor and how it interfaces across various communities in the Salt Lake City region. Community stakeholders have appreciated being engaged in scoping out the project's purpose and need alongside UDOT. It will be incumbent on UDOT in threading these stakeholder perspectives towards a formalized purpose and need statement that will guide the rest of the NEPA process towards conceptualizing a design solution for the I-15 project corridor.

